
Self-Driving Under Uncertainty
aa228 Course Project

Paul Shved
pavel.shved@gmail.com

Fall 2019
AA228 class at Stanford University

Abstract—This project focuses on building an online policy for
a simplified self-driving car problem, and on studying the effects
of perception accuracy on the efficiency of the planned route. The
planning objective is formulated as Partially Observable Markov
Decision Process. As the planning algorithm we use a Monte-
Carlo based online policy algorithm POMCPOW that works with
continuous state and action spaces. The quality of the planning
decisions is evaluated in a simulator on three simple scenarios. We
find that with certain fine-tuning, POMCPOW produces driving
decisions that result in mission completion albeit suboptimally.
However, for more complicated scenarios, the quality of planning
decisions degrade and the agent gets stuck without completing
the mission. We find that the agent behavior depends more on
the domain knowledge embedded into the policy algorithm that
on the sensor quality, but detailed exploration of this effect is
left to future work.

I. INTRODUCTION

This project focuses on building an online policy for
an autonomous agent that mimics a self-driving car. The
environment is very constrained and consists of one lane of
road and one "obstacle" car (see section III). The objective
of the policy is to complete the mission (drive until the finish
line) while not running into the obstacle.

In the literature on autonomy, "perception" typically refers
to the software components that observe the state of the world.
[5] [1]. The decision of what the car agent ("hero") does next
is produced by the "planning" components, based on the output
of "prediction", which in turn take results from the perception.

Building policy for self-driving cars is not a solved problem.
Replacing personally-owned cars with self-driving autonomous
cars will have beneficial effects on climate, productivity, and
accident rate. However, many challenges remain; according to
[2] perception algorithms are computationally intensive and
perform poorly in adverse conditions.

In this work, we aim to study the effects of imperfections
of perception algorithms on planning by building a planning
policy and studying its performance while varying perception
precision as a hyperparameter (see section V)

In the model we use, the agent can use a lidar-like sensor
to probe the location of a singular obstacle that may be in or
outside the lane. The sensors return noisy data according to
the emission model, for which we are going to use a Gaussian
as in [9]. The agent builds a belief about the obstacle location
and can take actions (e.g. "accelerate", "decelerate", "brake
hard", "maintain speed") to drive around it if needed. As per
[8], we will also apply a small negative reward at each time
step to penalize overly careful policy. We found that further
augmentations to the policy are needed; see section III-F.

This project’s objective is to study the effects of the
sensor accuracy on the quality of planning decisions. In
order to achieve this, we formulate the problem as a Partially
Observable Markov Decision Process (see section III-A) and
use POMCPOW [6], a Monte-Carlo Tree Search-based online
policy solver for the autonomous agent (section IV). The online
policy is first evaluated on simple scenarios (sections VI-A-
VI-B.), and then the study of the perception accuracy is
conducted (section VI-C).

II. RELATED WORK

Existing work explores diverse methods for policy planning
for autonomous agents. We survey some results that focus
on obstacle evasion and policy learning (as opposed to an
environment with adversarial agents) and aim to study the
efficiency of planning in presence of obstacles.

For example, in [8] the authors build a policy for aircraft that
avoids obstacle. The goal of the work is to improve efficiency
by proving that rerouting of all air traffic is not required to
ensure safe traversal of the airspace. The authors later show
that the policy can be encoded into Coordination Tables [7].

In this paper, the state space is disctetized into small
quadrants (e.g. the x and y coordinates were discretized with the
precision of 5000 ft.) The paper additionally utilizes "Adaptive
Space Discretization", improving model precision in the regions
where the debris trajectory intercepts the plane trajectory. This
discretization allows to build an optimal policy offline and
encode it into a simple human-readable representation [7].

Space discretization is appropriate for corase-grained plan-
ning for aircraft in airspace (since distances between agents
are large and decisions take effect over many timesteps).
However, for self-driving in urban environment, decisions take
almost immediate effect, and continuous state space is more
appropriate.

Markov Decision processes over continuous have applica-
tions in self-driving cars specifically. For example, [9] focuses
on identifying patterns in the driving behavior. The paper
proposes a model for sensor perception of other agents that’s
based on adding Gaussian noise. The resultant observations
are aggregated with the actions that human drivers take, and
"primitives" are extracted that are indicative of a certain
behavior. While the paper doesn’t focus on improving efficiency,
this is a successful application of Markov Decision Process to
modeling a self-driving car environment.

Another approach to working with noisy observations in
continouos environments is Kalman Filter and variations [3].

obstacle

agent

FIN
ISH

optimal trajectory

obstacle

agent

FIN
ISH

optimal trajectory

Fig. 1. Illustration of the self-driving problem studied in this project with
two different positions of obstacles and oprimal trajectories plotted.

Kalman filters produce a provably optimal policy when the
reward function is quadratic, and transition and observation
models are linear Gaussian functions. While this approach
could be used for the current project too, some simplifications
we employed make the model nonlinear. Additionally, this
approach might not be applicable for more complex scenarios,
whereas Monte-carlo methods in continuous spaces do not have
this restriction.

III. PROBLEM FORMULATION

At a high-level, the problem studied in this project is to
drive in a straight line, potentially routing around the obstacles.
Figure 1 shows an illustration of two scenarios. The following
simplifications are employed:
• The behavior of other agents is non-adversarial.
• The behavior of other agents does not change in response

to the actions taken by the hero.
• The environment is two-dimensional.
• Only driving in a straight line is considered (no lane

changes).
• The time is discretized to a resolution that is close the

perception-planning loop latency of a state-of-art self-
driving car.

A. POMDP model

Based on the description, we formulate the partially observ-
able Markov Decision Process problem in figure 2.

B. State Space

The state space we choose to model the problem reflects
the position of the agent and of the obstacles.

State space S is a tuple that describes the state of the agent
and the obstacles. It consists of the following elements:
• dxt and dyt - position of the front right corner of the agent
• bxt and byt - position of the rear left corner of the obstacle
• bxt and byt - position of the rear left corner of the obstacle
• vxt and vyt - velocity of the agent
• axt and ayt - acceleration of the agent
All state values are continuous and expressed in meters. A

state S is terminal if dxS > X or if it’s a special state Collision

A1

R1

axy1 axy2

oy1 oy2

bxy1 bxy2

vxy1 vxy2

dxy1 dxy2

R2

Fig. 2. Driving problem structure. The states represent the position of the
agent and the obstacle. The actions represent how controlling acceleration is
the only thing the agent can do. Note that R2 (the "challenge model") is only
used to improve performance of the MCTS solver, and is ignored in the final
model evaluation; see section III-F.

that’s entered after taking an action that results in a collision
with an obstacle.

Despite that the agent and the obstacle are driving within
one lane of traffic, we still model the lateral movement within
the lane using two-dimensional continuous coordinate space.

Choosing the front right and the rear left corners to represent
the state of the agent and of the obstacle respectively allows
for easier collision detection algorithm.

C. Action Space

The action space, denoted A, is a tuple that consists of the
following elements:
• "maintain" the current heading and velocity
• "accelerate" and "brake" set axt+1 ← ±α respectively

where α is constant.
• "slide left" and "slide right" represent taking and recov-

ering from an evasive maneuver and respectively change
dyt+1 to either δ = 0.5 or back to 0.

The obstacle is not an agent and does not take actions.
However, in the simulation and evaluation code, the subroutines
to emulate the agent movement is reused to represent the
obstacle’s movement.

D. Transition Model

In this work, most actions succeed as we focus on modeling
observational uncertainty. The "accelerate" and "brake" actions
change the acceleration at the next time step with 100%
certainty, which propagates to velocity vxy and dxy as per laws

of motion without friction. Time discretization step ∆t = 0.1
is used.

As an exception to that, "slide left" action has only 25%
chance to succeed, modeling the potential obstruction in the
left lane:

T (dxt+1 = δ|dxt = 0, slide right) = 0.25

The obstacle transitions to the next state according to a
scenario. The scenarios used to model the roadside situations
are described in section V.

E. Observation Model

For simplicity, we assume full perfect observability of byt ,
and only allow uncertainty in one dimension.

The agent observes the state of the obstacle with a certain
degree of accuracy σ and precision ρ. The accuracy σ models
a noisy sensor return:

P (oyt |b
y
t) = N (byt , σ) (1)

The returns are then also discretized. Not only this models the
actual sensor behavior which has limited precision, discretizing
observation space is critical for the POMCPOW algorithm to
produce results different from random policy, as mentioned in
Section 4.4 in [6].

If we denote the sensor precision as ρ, we modify oyt as

oyt ← boyt · ρc/ρ (2)

This presented a problem explored in section VI-C1, and
we recommend modifying this algorithm for further work as
described in section VII.

For the remainder of this project, we thus derive the proba-
bility weighting function for POMCPOW from (1) and (2):

Z(oyt |b
y
t , a) = bN (byt , σ)∆t · ρc/ρ (3)

F. Reward Model

In this project, we use two reward models. One reward model
(R1, we call it "benchmark model") is used for evaluation and
defines good driving. However, the solvers used were unable
to attain good results on that model directly. We augment this
reward model and use model R2 ("challenge model") when
applying POMCPOW.

In the benchmark model, a large positive reward (RM =
+10000) is given in step t for transitioning into the end state
dxt > X . A small negative reward is applied at every time step
to encourage progress (−1), a moderate negative reward for
lateral moves or for driving not in the lane (−2000 for each
timestem when dy 6= 0), and a large negative reward (−109)
for collision with the obstacle.

In the challenge model, the large positive reward for mission
completion RM is "spread out" across the state space, and we
reward high velocity

rd(S,A, S
′) = RM

d′
x − dx

2X
(4)

rv(S,A, S
′) =

{
RV ||v′||ν2 if ||v′|| < Speed Limit
−RSpeeding otherwise

(5)

R(S,A, S′) = R1 + rd + rv (6)

The motivation for introducing rd is the limitation of depth-
bounded online tree search methods. If the large reward is
invisible when the rollout depth is smaller than 2X

∆t . This
equals to 300 in our simulations, and running an online solver
with this depth is intractable.

G. Prior information

Since POMCPOW starts with a belief, it is important to
provide a prior belief that is consistent with the observation.
That is, instead of a uniform (uninformed) prior, the observation
needs to contain an informed prior. In order to initially seed
our particle filter, we sample oy0 uniformly. from [−3σ; +3σ]

H. Belief update

The model uses Particle Filter without Rejection as a way
to maintain belief state with N = 10 particles.

Since the obstacle might move in the next step, and we
are not sure if it will, we incorporate this uncertainty into
the model as well. At every step, we replace αN particles
with new observation while we keep the remaining (1− α)N
particles from the previous step. This is inspired by Feynman-
Kac particle filter [4] but does not strictly follow the method.

IV. POLICY SOLVER

Since the state space is continuous and not discretized, we
use a Monte-Carlo tree search-based algorithm, POMCPOW [6].
It is a fixed-depth tree search algorithm that uses Double
Progressive Widening to explore continouos actions space, and
observation binning to constrain the continuous observation
space.

The algorithm allows incorporating the prior information,
and the default priors (e.g. random rollouts) were not sufficient
to achieve high rewards. The default "random" rollout estimate
erased the difference between the effects of the actions explored
close to the root of the tree. We first disabled rollouts and
tried using 0 as expected reward instead. This alone was
insufficient as well: the policy would instruct the car to
accelerate (optimizing R2) even when an obstacle is impeding.

Instead, we considered a policy "always brake" as the rollout
policy; this produced policies that stopped before impeding
obstacles. However, the policy

We addressed this problem by using two rollout policies:
always brake and always maintain, comparing the expected
rewards, and choosing the action produced by the highest
policy.

POMCPOW Optimal
Action count % count %

slide_right 57 9.9 0 0
slide_left 15 2.6 0 0
brake 8 1.4 0 0
maintain 51 8.8 3 6.25
accelerate 447 69.69 45 93.75

Fig. 3. Scenario 1a (driving without obstacles): count and percentage of
actions taken by our and optimal policy across 10 runs. Larger percentage
value is highlighted in bold. Optimal policy is to accelerate until the speed
limit is reached (which is almost at the end of the 40-meter wide world) and
maintain speed.

V. EVALUATION

We’ve evaluated the performance of the driving code on mul-
tiple scenarios, aiming to achieve the satisfactory performance
on the simple ones before moving onto the more complex. We
additionally conducted the study of sensor accuracy on the
rewards the policy is available to collect.

The scenarios used for evaluation are:

• Scenatio 1a: Driving in Straight Line: X = 20,
obstaclre is visibly off the road, σ = 0.

• Scenatio 1b: Driving around stationary obstacle: X =
20, obstacle is visibly on the road, but is passable but
evasive maneuver is required (dyt = 0.2) σ = 0.1.

• Scenario 2: Stop Before Obstacle: the obstacle is
blocking the road and is impassible (dyt = 1.0); the agent
needs to stop in front of it and stay.

• Scenario 3: Accuracy Study: the obstacle is randomly
placed dyt ∼ [0; 1] and the sensor accuracy is given by

σ =

{
βσ0 when |dx| > 5

σ0 when |dx| ≤ 5
(7)

The reward produced by the policy on the evaluation
model is compared for β ∈ 1, 2, 5, 10.

In all scenarios, the obstacle is at 0 on the x axis.
The following parameters were used for POMCPOW:

max_depth 20, time limit 60s per solver run (however, the
average time was only 1.67 seconds on a Core i9-9700k CPU),
and c = 10 for the upper confidence bound.

The code is available at https://github.com/pshved/aa228.

VI. ANALYSIS

Before analyzing the behavior of specific scenarios,
MCTS due to random sampling policy doesn’t select the

best action. For example, the best action is Accelerate, but
since any trace would have an equal mix of all actions, MCTS
doesn’t see the difference.

(!) Plot velocity over time for an obstacle and compare it
with velocity over time with no obstacle on one plot.

Scenario 1a Scenario 1b
Action count % count %

slide_right 57.0 9.9 81.0 10.8
slide_left 15.0 2.6 45.0 6.0
brake 8.0 1.4 90.0 12.0
maintain 51.0 8.8 88.0 11.7
accelerate 447.0 77.3 448.0 59.6

Fig. 4. Scenario 1b and 1a comparison: count and percentage of actions
taken across 10 runs by the POMCPOW algorithm. Larger percentage value
is highlighted in bold.

−30 −20 −10 0 10 20 30

x, m

0.0

2.5

5.0

7.5

10.0

12.5

15.0

17.5

ve
lo

ci
ty

,m
/s

1a: no obstacle
1b: obstacle at x=0
obstacle

Fig. 5. Scenario 1b and 1a comparison: velocity plotted against the agent
position on the x axis for 1 random run for each of the two scenarios.

A. Scenario 1: Driving in Straight Line

The evaluation results for Scenario 1a are presented on 3.
We see that while our solution does eventually accelerate,
POMCPOW also "produces" a variety of other actions. The
larger impact on that is the relative indifference which action
to take at the end of the simulation: when there is no obstacle
between the agent and the reward, all actions seem similar
(see Fig.5). There’s also some exploration affecting the choice
of actions at the earlier stages.

In scenario 1b, optimal policy is harder to deduce, so we
compare the behavior of the agents across scenarios 1a and 1b
(see Figure 4). More telling are velocity patterns (see Figure 5):
we can indeed see that the agent learns to approach the obstacle
more carefully to ensure (a) that it can swerve around; (b) to
better localize it.

Note how the behavior towards the end of the simulation
exposes a problem with our challenge policy: the penalty for
speeding is not large enough so speeding to complete the
mission faster is indeed optimal.

https://github.com/pshved/aa228

Depth Avg. reward Avg. time (s)

10 -95454555 1.03
20 -362 1.60
40 -301 2.79
80 -282 3.09

Fig. 6. Scenario 2: comparison of average reward over 300 steps as function
of the exploration depth when the obstacle is reliably and observably blocking
the path. Note that depth of −10 (unlike larger depths) is not sufficient to
avoid collisions.

−30 −20 −10 0 10 20 30

x, m

0

2

4

6

8

10

12

14

ve
lo

ci
ty

,m
/s

σ = 5

σ = 1

obstacle

Fig. 7. Scenario 3 comparison of two runs with better accuracy (corresponds
to σ = 1) and worse accuracy (corresponds to σ = 5) with the obstacle at
by = 0.32 in both graphs. We can see that the agents get often confused about
the position of the obstacle, and better a5ccuracy doesn’t result in better policy.
The line for σ = 1 also serves as an accurate representation of Scenario 2
behavior.

B. Scenario 2

In scenario 2, we found, unsurprisingly, that if the depth of
the tree search is not enough to explore the state space until
the impeding obstacle, the collisions are imminent. Thanks to
the "always brake" rollout policy, even the depth of 20 was
able to stop the car in front of an obstacle despite that 25 steps
are required.

We found also that (a) the average time to compute the
next step does not grow exponentially, and (b) that the returns
quickly diminish with the growth of depth. We’ve conducted
all our other experiments with depth 20.

C. Scenario 3

In Scenario 3, we aimed to study how the driving behavior
degrades when sensor

We found out, however, that the simulation provided in
this paper is not sufficiently accurate to perform this study.
Figure 7 demonstrates that the agent fails to drive around
an obstacle when the sensor accuracy is better, but succeeds
when it’s worse. One explanation could be that the problem

statement or the solver do not exhibit sufficient performance.
Another explanation would be that the more sensor produces
such outlandish observations that the agent gets through by
pure luck. We leave the detailed exploration to future work.

1) Particle Filter and Precision Failure Mode: During
experiments in Scenario 3, we found a problem worth noting
with (2) when particle filters are used. Assume bxt = 0.55; then
oyt = 0.5. When sampling successor states from the generative
model starting from oyt without adding noise, it would be
feasible to drive past the obstacle after taking action "slide
left", while in reality this results in a collision.

Modifying observation model such that it assumes the
obstacles are strictly larger then they are would mitigate that.

VII. FUTURE WORK

One of the things to explore could be a more rigorous
approach to particle filtering that still combines the previous
observations with the current. We also can incorporate more
rollout policies into the ensemble policy.

VIII. CONCLUSION

We applied online Monte-Carlo tree search to building policy
for autonomous agents emulating driving a self-driving car
around the obstacle. Specifically, we applied POMCPOW [6],
a variation of Monte-Carlo Tree Search for continouos action
and observatino spaces.

This method produces viable results in simple cases even
when state space discretization is not used (only with time
discretization). However we found that a carefully crafted
rollout policy and spreading the rewards across the world are
required to make that mehtod to work.

Other drawbacks of the method include its inability to
learn from prior experience and produce an offline policy
(unlike policy gradient methods or Q-learning) which results
in unnecessary computation in simple situations.

REFERENCES

[1] Claudine Badue, Ranik Guidolini, Raphael Vivacqua Carneiro, Pedro
Azevedo, Vinicius Brito Cardoso, Avelino Forechi, Luan Ferreira Reis
Jesus, Rodrigo Ferreira Berriel, Thiago Meireles Paixão, Filipe Wall Mutz,
Thiago Oliveira-Santos, and Alberto Ferreira de Souza. Self-driving cars:
A survey. CoRR, abs/1901.04407, 2019.

[2] Rui Fan, Jianhao Jiao, Haoyang Ye, Yang Yu, Ioannis Pitas, and Ming
Liu. Key ingredients of self-driving cars. CoRR, abs/1906.02939, 2019.

[3] Rudolph Emil Kalman. A new approach to linear filtering and prediction
problems. Transactions of the ASME–Journal of Basic Engineering,
82(Series D):35–45, 1960.

[4] P Del Moral. An introduction to feynman-kac particle methods in statistical
learning and rare event simulation, 2014. http://people.bordeaux.inria.fr/
pierre.delmoral/Sydney-Uni.March-28-2014.pdf.

[5] Alexandru Constantin Serban, Erik Poll, and Joost Visser. A standard
driven software architecture for fully autonomous vehicles. In ICSA
Companion, pages 120–127. IEEE Computer Society, 2018.

[6] Zachary Sunberg and Mykel J. Kochenderfer. POMCPOW: an online
algorithm for pomdps with continuous state, action, and observation spaces.
CoRR, abs/1709.06196, 2017.

[7] R. E. Tompa, B. Wulfe, M. P. Owen, and M. J. Kochenderfer. Collision
avoidance for unmanned aircraft using coordination tables. In 2016
IEEE/AIAA 35th Digital Avionics Systems Conference (DASC), pages 1–9,
Sep. 2016.

[8] Rachael Tompa and Mykel Kochenderfer. Optimal aircraft rerouting during
space launches using adaptive spatial discretization. pages 1–7, 09 2018.

http://people.bordeaux.inria.fr/pierre.delmoral/Sydney-Uni.March-28-2014.pdf
http://people.bordeaux.inria.fr/pierre.delmoral/Sydney-Uni.March-28-2014.pdf

[9] Wenshuo Wang and Ding Zhao. Extracting traffic primitives directly
from naturalistically logged data for self-driving applications. CoRR,
abs/1709.03553, 2017.

	Introduction
	Related Work
	Problem Formulation
	POMDP model
	State Space
	Action Space
	Transition Model
	Observation Model
	Reward Model
	Prior information
	Belief update

	Policy Solver
	Evaluation
	Analysis
	Scenario 1: Driving in Straight Line
	Scenario 2
	Scenario 3
	Particle Filter and Precision Failure Mode

	Future Work
	Conclusion
	References

