
Digital "Mad Men"
Training RNN as an Ad Copywriter

Paul Shved
pshved@stanford.edu

Christina Lin
chrlin@stanford.edu

Sridatta Thatipamala
sthatip@stanford.edu

Winter 2019
CS224n class at Stanford University

Google, Inc.

This is a custom project.

Mentor: Abi

Abstract

In this project, we aim to generate advertisements from positive product reviews
and ad keywords. We train a "prototype-then-edit" neural model from [5] on a
dataset of positive Amazon reviews and modify the content of the generated text
using edit vectors drawn from a dataset of ad keywords. In contrast to the previous
research, we produce the edit vector from the a secondary dataset, rather than
the primary one on which the neural editor model is trained. We evaluate several
variants of the model on fluency, relevance, and style. We find that the models
are able to perform style transfer but are less successful in incorporating content
keywords.

1 Introduction

Digital Advertisement is a growing 100+ billion dollar industry in the US [2]. Algorithms that can
generate relevant advertisements automatically may significantly reduce advertiser costs and improve
performance. However, not every text can serve as an ad; such texts should be: a) grammatically
correct ("fluent"), b) relevant to the product they describe, and c) cast the product in a positive light.

We explore the use of neural networks to perform the creative work of generating ads. Many natural
language processing tasks, such as question answering, machine translation, sentiment analysis, and
parsing benefit heavily from using neural networks. Compared to these NLP tasks, generation of new
text samples that fit certain requirements is less researched, and the available research demonstrates
mixed results.

Current state of the art methods for natural language generation are based on recurrent neural language
models. Some of the problems observed from such models include a tendency toward more generic
and irrelevant sentences such as "I don’t know" [7]. Instead of generating from scratch, another
approach is to start with a high quality sentence and modify it to create a new sentence. One such
model, presented in [8], transfers sentiment by replacing key phrases. Another model described in [5]
samples a sentence and performs a random edit, which results in a fluent sentence of similar style that
sounds like a paraphrase. Because the starting point is written by a human, these generated sentences
are not biased towards shortness or vagueness [5]. It is, however, difficult to control the content of
these sentences, and they end up similar to the training dataset.

In this paper, we apply the model from [5] to transfer the writing style of one dataset while drawing
the content of the text from a second dataset. Specifically, we generate positive product reviews
whose subjects are specified by ads keywords.



We find however that this way of constructing edit vectors for the decoder from [5] does not produce
the desired edited sentences. The sentences generated are mostly grammatical, but the content of the
keywords does not appear in the edited sentences. See section 4.2 for evaluation details.

2 Related Work

2.1 Neural approaches to NLG

The current state of the art method for style transfer is the variational auto-encoder model. Most of
the current work in natural language generation relies on some form of autoencoders to achieve style
transfer, and rest use the variational auto-encoder as a baseline for comparison.

In [6], Kingma and Welling leverage a Stochastic Gradient Variational Bayes (SGVB) estimator
to optimize a neural network recognition model. Kingma and Welling describe a class of learning
problems with directed probabilistic models, latent variables with intractable posterior distributions,
and large datasets. They propose a reparameterization of the variational lower bound, which yields a
lower bound estimator that can be optimized using standard stochastic gradient descent.

For style transfer in text in particular, the variational auto-encoder may be applied in the form of a
variational auto-encoder seq2seq model. The encoder and decoder are both RNNs with GRUs. They
are optimized using stochastic gradients obtained via backpropogation and the reparameterization
described in Kingma and Welling.

We are particularly interested in an auto-encoder based approach to NLG that transfers style using a
"prototype-then-edit" model, as it separates style transfer from content. In [5], Guu et. al attempt
to develop a "unconditional generative model for text" which generates sentences similar to the
sentences in their training corpus. In this model, the authors sample a "prototype" sentence x from the
training corpus and sample a multidimensional "edit" vector z from a latent distribution. They then
use a neural network, referred to as the "neural editor" to apply edit z to prototype x, thus generating
sentence x′.

The paper demonstrates the performance of this model using two methods: perplexity and human
evaluation. The neural editor lower perplexity than the other baseline models. While the perplexity
provides insight into the performance of the language model, there are no quantitative metrics for
how well the model accomplishes style transfer.

[5] is compelling because it learns a semantic space of edits to sentences. This technique of applying
edits seems novel in the literature and could be useful in our task of text generation for ads.

2.2 Evaluation

NLP as a whole lacks standardized evaluation metrics, and the selection is even sparser for NLG.
Many NLG work relies on perplexity and human evaluation, but we are interested in measuring our
model’s performance quantitatively.

In a 2017 paper, Fu et al propose the two novel evaluation metrics measure different aspects of style
transfer: transfer strength and content preservation, respectively. Transfer strength measures how well
the writing style is transferred from source to target, and it is measured using a sentiment classifier.
Content preservation measures the consistency of the subject matter between two sentences, and it is
computed using the cosine similarity between sentence embeddings. We adapt these ideas into the
development of our own evaluation metrics.

3 Approach

In this work, we are using the neural model from [5] and apply it to a new dataset of Amazon Reviews.
Additionally, we use the model trained this way to produce targeted edits, and evaluate the quality of
the results. Our contribution includes:

• Preparation of the new dataset of Amazon Reviews to achieve Jaccard distance proximity
(see 4.1).

2



• Implementation of the baselines and training of the baseline Language model using the code
from [8] on the Amazon Reviews.

• Implementation of the Ad Generation algorithm 3.2, temperature smoothing.

• Implementation of evaluation metrics: Perplexity, Content Preservation, Transfer Strength.

For the model we train, its authors [5] sample a "prototype" sentence x′ from the training corpus X
and sample a 600-dimensional "edit vector" z from a latent distribution. Then, using an attention-
based "neural editor", the authors generate a new sentence x conditional on the edit vector. See
example in table 2.

The likelihood of a sentence is, in the authors’ model, is

p(x) =
∑
x′∈X

(p(x|x′)p(x′)) =
∑
x′∈X

(
Ezvp(z) [pedit(x|x′, z)] p(x′)

)
(1)

The author mention that the model can not be trained on the log-likelihood p(x) directly as it requires
(a) summing over the large input dataset X , and (b) the expectation over a uniform random sample
p(z) has no closed form and would be too slow to sample. The authors mitigate this by:

• Introducing an inverse neural editor: instead of computing Ezvp(z), the authors construct
the edit vector z = q(x, x′) from x and x′ and add random noise to this vector. This
produces a distribution q(z|x, x′).

• Maximizing the lower bound of p(x|x′) instead through Evidence Lower Bound over
q(z|x, x′): log p(x|x′) ≥ Ezvq(z|x,x′) +KL(q||p(z)) where KL is the KL-divergence that
penalizes discrepancy between p(z) and q.

q(x, x′) consists of two concatenated sums or GloVe word vectors for the words added to x to produce
x′ and the words deleted. The authors make sure the specific method of adding random noise results
in a differentiable negative log-likelihood.

The architecture for this model proposed in [5] is a seq2seq encoder and decoder with attention.
The encoder is a 3 layer bidirectional LSTM with GLoVe embedding. The input to the decoder is a
concatenation of the encoder output, and Wz where z is the edit vector and W is a linear layer. The
decoder is a 3 layer unidirectional LSTM with attention over source sentence.

During data preparation, [5] generates input-output pairs from list of sentences based on Jaccard
distance threshold between the sentences in the pair. For large datasets, this step is nontrivial, as
O(N2) runtime is intractable. In our project, we implemented this algorithm and had to choose a
different threshold; see section 4.1.

3.1 Training

During training, the authors sample an edit vector, which becomes the input to the decoder, using
the following algorithm. For each (x, x′) ∈ X : compute vinserted : sum of GLoVE embeddings
of inserted words. Then compute vdeleted : sum of GLoVE embeddings deleted words. Then pass
vinserted and vdeleted through a linear layer and concatenate into vedit, adding noise sampled from
Von Mises-Fisher distribution (a distribution over points on a unit hypersphere)

Table 1: Sample Training Data

Prototype (x) "i have used this headset for a couple of years now and it still works great"
Target (x′) "i have used this hundreds of times and it still works great"
Edit vector (z) ["headset" + "for" + "a" + "couple" + "of" + "years" "now"; "hundreds" + "of" + "times"] + noise

3.2 Text generation

After the edit model is trained, its decoder is used in the text generation algorithm, using a dataset of
keywords K). For each keyword phrase k ∈ K

3



1. Generate the edit vector zk = [
∑

word∈k vword; 0] using GLoVE embeddings for k

2. Let Gk = ∅. For each xp ∈ X
(a) Use beam search and decoder to find x′ that maximizes p(x′|xp, zk)

(b) Let the loss on the decoded sentence (negative log-likelihood) be l

(c) Gk ← Gk ∪ {(x′, l)}
3. Find bottom N elements in Gk that have the lowest loss

In order to increase diversity, we applied temperature when computing token probabilities in the
beam search in step 2a, and evaluated its impact (see table 5).

The result of this algorithm on one example looks like this (Table 2). Note that the keywords do not
actually appear in the decoded sentence; this behavior is not what we expected, but it is characteristic
of this model. See section 5 for the details.

Table 2: Sample Text Generation algorithm result

Prototype (x) "i have used this headset for a couple of years now and it still works great"
Keyword phrase (k) "auto loans"
Edit vector (zk) ["auto" + "loans"; 0] (Note the 0 for the deletion part of z, and no noise)
Decoded result k "i ve had this for a couple of years now"
Loss l 0.33
Result we expected: "i have used these auto loans for a couple of years now and it works"

3.3 Data preparation

We have trained the prototype-then-edit model over the Amazon product review corpus. Rather than
using all pairs of sentences (x, x′) from the training data, we only consider pairs with a high token
overlap, as measured by Jaccard similarity.

To generate similar pairs efficiently, we used the datasketch Python library [9] to generate a locality-
sensitive hash of each review sentences.

Specifically, we tokenized each sentence into words and computed a MinHash [1] over all token
3-grams. MinHash is a probabilistic algorithm to estimate the similarity of two sets. It outputs a
hash value which can be used as a locality-sensitive hash for the set. That is, two sets with high
degree of similarity are likely to map to the same MinHash. MinHash has the desirable property
that P [MinHash(x) = MinHash(x′)] = JaccardSimilarity(x, x′), therefore it can be used as
a proxy to quickly find similar sets among a large dataset.

We used datasketch to index the hashes of all sentences and find collisions, i.e. similar sentences. We
restricted our data to pairs of sentences with Jaccard similarity of at least 0.4.

Table 3: Example training data: sentences pairs of Jaccard similarity ≥ 0.4

Sentence 1 Sentence 2
Not bad for the price Best model for the price.
It just cannot be beat! This case just cannot be beat!
This camera I would highly recommend to my friends. I would highly recommend this camera

3.4 Word Vectors and Vocabulary

The original neural editor code used word vectors that were trained on their Yelp review corpus. The
Yelp vectors led to in many out-of-vocabulary words, because the distribution of Yelp reviews is
very different than that of Amazon reviews. Since our model had a fixed vocabulary size of 30K, we
trained our model using the GLoVE vectors of the 30K most common words in the Amazon corpus.
This decreased the number of "UNK" tokens output by the model. A future extension of this project
could fine-tune the GLoVE vectors using the Amazon review corpus, rather than taking a subset of
the standard GLoVE vectors.

4



3.5 Baselines

The target algorithm is an encoder-decoder implementation for P (x|x′, z), where x′ is the prototype
sentence, x is the target sentence, and z is the edit vector generated from ad keywords. We use two
baselines.

Baseline 1 ("Sampled Pairs") is similar to RETRIEVEONLY from [8]. For every input sentence,
we retrieve the closest lexically similar input sentence from the original corpus (except the input
sentence), as measured by Jaccard Distance.

Baseline 2 ("Concatenated Pairs") is used to compare our proposed Ad Generation algorithm vs
non-neural simple approach. Given the keywords and a sentence from the test set, we replace the
first word in the sentence with the keyword phrase. For example, the keywords "auto insurance price
quotes" and the prototype "it is made very well and looks cool" form the baseline text, "auto insurance
price quotes is made very well and looks cool" We expect this baseline achieve similarly high scores
on Transfer Strength and Content Preservation, but lower scores on Perplexity than the target model.

4 Experiments

4.1 Data

We use the following datasets:

1. A dataset of 277,228 one-sentence positive Amazon product reviews from [8]. This is used
to train the edit model.

2. A dataset of 814 keyword phrases [4] (1-2 words). We use this data to synthesize edit vectors
and evaluate the prototype-then-edit model on various style transfer metrics.

3. A dataset of 200 randomly selected words from the 2000 most common words in the Amazon
product reviews. This dataset was used in the same way as the dataset of keywords.

4.2 Evaluation Method

There is not yet a single standard quantitative metric to evaluation style transfer in text, so we use
three separate metrics to measure fluency, content preservation, and transfer strength.

1. Fluency - We use perplexity of the edit model we’ve built on the generated sentences as
a metric for Fluency. Due to time limitation, our original plan to use a general-purpose
language model (such as BERT) is left for future work.

2. Content Preservation - We measure content preservation with cosine distance between source
sentence embedding (original text) and target sentence embedding (generated review texts).
The sentence embeddings are are a concatenation of the mean, minimum, and maximum
vector values across words in a sentence. This metric was specified in [3], and similar
methods are frequently used for evaluation of other NLP tasks without ground truth.

3. Style Transfer Strength - Trasnfer strength refers to how well the writing style has been
transferred. In [3], style transfer strength is measured using a sentiment classifier trained on
IMDB data. A generated sentence is considered of matching style if it is given the same
classification as the corresponding source. The score for style transfer strength is given
Nright

Ntotal
, where Nright is the number of correctly classified generated sentences and Ntotal is

the number of test data.

4.3 Experimental Details

The neural editor model was trained using the same parameters as in the original paper [5] (learning
rate 0.001, batch size 128). However, we trained the model on the Amazon dataset only using
100, 000 iterations instead of 400, 000 since our dataset was smaller, and the model performance
stopped improving on the validation set (Table 4). Total training time 7.5 hours on an nVidia RTX
2080 Ti GPU.

5



Table 4: Loss vs number of training iteratinos

Loss on training set Loss on validation set

X axis: number of iterations; Y axis: loss

For the initial run, we sampled 500 keywords from the keyword dataset, and used 1024 randomly
sampled prototypes. We batched the examples into batches of 512 items.

Our initial results did not demonstrate the desired performance. In order to explore how the edit
model performs under various conditions, we have implemented the modifications to the input data
and the decoder hyperparameters (see Table 5).

Table 5: Input Data and Hyperparameter experiment descriptions

Experiment name Description
Editor: Ads Keywords the keyword phases are sampled from the Ads Dataset, decoder tempera-

ture = 1.0
Editor: Ads Keywords (tem-
perature = 3)

same as above but the decoder temperature = 3.0

Editor: Ads Keywords (30x) apply the decoder again to the result of the decoder 30 times using the
same edit vector constructed from the keywords (temperature = 1)

Editor: Amazon Keywords Instead of sampling edit vectors from Keyword dataset, we use the words
from the reviews themselves. Most of the Ad Keywords never appeared
in the training set, and we hoped it could improve performance

4.4 Results

We evaluate several models and baselines with two style transfer metrics: classification, which
measures transfer strength, and cosine similarity, which measures content preservation. Table 6 shows
the metrics for two baselines and four models. All are trained on the Amazon reviews dataset. Three
of the experiments perform edits with ads keywords, and one experiment performs edits with Amazon
keywords.

As described in section 3.5 Baseline 1 is reflective of the training and test data. As a sanity check,
we expect its scores to serve as a ceiling for our models’ scores. Baseline 2 attains a nearly perfect
content preservation score, since the source and target are almost identical, and it scores predictably
lower on the perplexity. Content preservation is less than 1.00 since the first word of the review is
removed. The classification score of 0.935 indicates that adding a few ad keywords without modifying
the writing style changes the sentiment classification for some of the samples. A score of 0.935 can
be considered very strong style transfer.

Our vanilla model, "Editor: Ads Keywords," performs much worse than Baseline 1 on transfer
strength. This implies that after editing and inserting keywords, the generated text does not maintain
the style of the original product review as well as Baseline 1. However, increasing the temperature
greatly improves the model’s transfer strength performance, although it decreases fluency. "Editor:
Ads Keywords (temperature = 3" achieves better transfer strength than both Baselines. Taking into
account noise in the metric, the model with increased temperature performs as well as Baseline 2,
effectively completely maintaining the writing style. These conclusions are based on the assumption
that sentiment classification is a perfect measure of transfer strength.

6



Overall, the perplexity on the decoded sentences is low since beam search aims to maximize the
probability, which minimizes the perplexity. Perplexity of the edit model is comparable with the
perplexity of a baseline language model from [5] that we retrained on the Amazon dataset, and
achieved 5.78. In the project milestone, the higher value of the perplexity was a result of using a very
narrow vocabulary; it was an error that we fixed.

All models perform approximately the same on content preservation, which is approximately on par
with Baseline 1. This indicates that the generated text is similar in content to the source, but to fully
analyze content preservation requires a more in-depth look at a few examples to better understand the
cosine similarity metric. We perform this analysis in Section 5.

Table 6: Style transfer metrics for models trained and tested on positive Amazon reviews

Dataset Transfer
Strength

Content
Preservation

Perplexity

Baseline 1: Sampled Pairs 0.860 0.927 -
Baseline 2: Concatenated Pairs 0.935 0.997 24.51
Editor: Ads Keywords 0.778 0.912 1.78
Editor: Ads Keywords (temperature = 3) 0.950 0.918 30.14
Editor: Ads Keywords (30x) - 0.910 1.73
Editor: Amazon Keywords 0.744 0.915 1.30

The following metrics are used: Classification for Transfer Strength (higher is better), Cosine
Similarity for Content Preservation (higher is better), and Perplexity (base 2) of the language model

on the edited sentence for Fluency (lower is better).

5 Analysis

We compare the performances of our models to the one another and to the baselines by analyzing
the metrics in Table 6. As detailed in Section 4.4, we find that adding edits from either the Ads or
Amazon keywords dataset decreases the transfer strength, while increasing the temperature improves
transfer strength. Additionally, the generated texts maintain content preservation at the same level as
Baseline 1.

To better understand the meaning of the content preservation score, we qualitatively examine a few
examples generated by the "Editor: Ads Keywords" model. Table 7 contains three representative
examples from the ten generated texts with the highest content preservation scores, while Table 8 con-
tains three representative examples from the ten generated texts with the lowest content preservation
scores.

Based on Table 7, we observe that the content preservation score reflects more the content preservation
between the prototype and the generated text rather than between the keywords and the generated
text as intended. The bias is more severe when the prototype is a long sentence. None of the top
score texts successfully incorporate the keywords into the generated text, yet they obtain high scores
because the generated text is nearly identical to the prototype. The scoring system from [3] may
work better for longer and more sentence-like keyword phrases, but for our purposes, it would have
been useful to give a greater weight to the keywords and lesser weight to the prototype, rather than
concatenating them together.

Table 8 gives examples of some common errors in our model. The first generated text is nonsensical
and repetitive, which may reflect some weakness in the language model related to the word "utensils."
Note that this example attains a content preservation score of 0.770, suggesting that a score around
0.7-0.8 should be considered very low quality.

The second generated text is "but with the <unk> that comes with the back," which is grammatically
correct and contains an <unk> where a noun, such as the keywords "home loans refinance," could
potentially be inserted. Such examples are some of the more promising results from our model.
However, this example has a low content preservation score because it is very different from the
prototype and also does not contain the keywords.

The third generated text, "in fact , <unk> if you just want to try it , <unk> not an issue," contains
several <unk> tokens that follow punctuation marks, and if they are removed, the sentence is nearly

7



fluent. This type of error recurs in many examples from our model, which may indicate that there is a
related bug in the model.

Based on our examination of a few examples, we conclude that a high content preservation score may
not indicate that the content of the keywords was successfully transferred to the generated text, and
that a "high" score is likely around 0.9 or higher. Quantitative metrics for NLP and particularly NLG
are inexact and must be considered alongside human evaluation.

Table 7: Examples with highest content preservation scores, generated by a model trained on Amazon
reviews with ads keywords

Keywords refinancing
Prototype the cheap screen on my ipod touch gets sparkly after a good wipe , the steinheil gets more smeary
Generated Text the cheap screen on my ipod touch gets sparkly after a good wipe , <unk> the steinheil gets more wipe
Preservation 0.987
Keywords sky uk
Prototype you can search google for this kind of side effects , i have found some articles .
Generated Text google search and you can search for this kind of side effects , <unk> i bought some articlee
Preservation 0.984
Keywords earn so
Prototype if your pain is caused by bending your wrist downward too much , this is the brace for you
Generated Text so if your pain is caused by bending your wrist into bending your wrist your wrist granddaughters wrist downward too much , <unk> this is the brace for you
Preservation 0.982

Table 8: Examples with lowest content preservation scores, generated by a model trained on Amazon
reviews with ads keywords

Keywords Prototype Generated Text Content
Preservation

fargo refinance the set fulfills my range
of needs while adhering
to budget constraints

utensils utensils utensils
utensils and utensils uten-
sils utensils utensils kong
and utensils utensils...

0.770

home loans refinance this is the next best thing
to a cabinet trash can that
comes with the cabinets .

but with the <unk> that
comes with the back .

0.826

law lexington see how my cat likes it ,
how it washes , if it dis-
colors , chips , or rusts ,
etcetera .

in fact , <unk> if you just
want to try it , <unk> not
an issue .

0.828

6 Conclusion

6.1 Findings

In conclusion, we have successfully trained a neural editor model to output sentences that are similar
to Amazon reviews. We also aimed to craft edit vectors that control the output sentences such that
they contain desired keywords. We evaluated the generated texts with both quantitative and qualitative
analyses. Our model does not perform as expected in this second task involving desired keywords.
The generated output sentences do not frequently contain the keywords from the edit vector.

There are many potential reasons for this. The style and vocabulary of advertisements are very
different to that of Amazon reviews. Since the neural editor is ultimately a conditional language
model, it may not assign high probability to such sentences. The model was also trained by framing
sentence editing as a translation task. Therefore, it may have learned to output sentences without
much regard to the edit vector.

Natural language generation is still a developing field, and text style transfer is even more nascent. In
this project, we tested one approach to textual style transfer and found its strengths and limitations.
We believe this can contribute to future attempts.

8



6.2 Future Work

Due to the time limitation on this project, we found many more opportunities than we had time to
explore. We recommend future work on this topic to consider:

1. Improve loss function to take into account transfer of content from edit vector
2. Use Transformer-based architectures to apply attention over the edit vector words as well as

over the prototype sentence
3. Modify Beam search to prefer candidates that contain edit keywords over probable-but-

boring sentences
4. Perform detailed analysis of our key metrics: classification and cosine preservation. Apply

regression to compare their values against human evaluation. We suspect that these measures
are not linearly correleated with style transfer quality.

Acknowledgements

We would like to thank Professor Chris Manning for teaching a fantastic class and Abigail See for
her invaluable advice and guidance on this project.

References
[1] A. Broder. On the resemblance and containment of documents. In Proceedings of the Compression

and Complexity of Sequences 1997, SEQUENCES ’97, pages 21–, Washington, DC, USA, 1997.
IEEE Computer Society.

[2] eMarketer Corey McNair. Us ad spending 2018, 2018.

[3] Zhenxin Fu, Xiaoye Tan, Nanyun Peng, Dongyan Zhao, and Rui Yan. Style transfer in text:
Exploration and evaluation. In Thirty-Second AAAI Conference on Artificial Intelligence, 2018.

[4] University College London Google. Open advertising dataset, 2014.

[5] Kelvin Guu, Tatsunori B. Hashimoto, Yonatan Oren, and Percy Liang. Generating sentences by
editing prototypes. CoRR, abs/1709.08878, 2017.

[6] Diederik P Kingma and Max Welling. Auto-encoding variational bayes. arXiv preprint
arXiv:1312.6114, 2013.

[7] Jiwei Li, Michel Galley, Chris Brockett, Jianfeng Gao, and Bill Dolan. A diversity-promoting
objective function for neural conversation models. arXiv preprint arXiv:1510.03055, 2015.

[8] Juncen Li, Robin Jia, He He, and Percy Liang. Delete, retrieve, generate: A simple approach to
sentiment and style transfer. CoRR, abs/1804.06437, 2018.

[9] Erkang (Eric) Zhu. datasketch. [Online; accessed <today>].

9


	Introduction
	Related Work
	Neural approaches to NLG
	Evaluation

	Approach
	Training
	Text generation
	Data preparation
	Word Vectors and Vocabulary
	Baselines

	Experiments
	Data
	Evaluation Method
	Experimental Details
	Results

	Analysis
	Conclusion
	Findings
	Future Work


