
CS229: Additional Notes on Backpropagation

1 Forward propagation

Recall that given input x, we define a[0] = x. Then for layer ` = 1, 2, . . . , N ,
where N is the number of layers of the network, we have

1. z[`] = W [`]a[`−1] + b[`]

2. a[`] = g[`](z[`])

In these notes we assume the nonlinearities g[`] are the same for all layers be-
sides layer N . This is because in the output layer we may be doing regression
[hence we might use g(x) = x] or binary classification [g(x) = sigmoid(x)] or
multiclass classification [g(x) = softmax(x)]. Hence we distinguish g[N ] from
g, and assume g is used for all layers besides layer N .

Finally, given the output of the network a[N ], which we will more simply
denote as ŷ, we measure the loss J(W, b) = L(a[N ], y) = L(ŷ, y). For example,
for real-valued regression we might use the squared loss

L(ŷ, y) =
1

2
(ŷ − y)2

and for binary classification using logistic regression we use

L(ŷ, y) = −(y log ŷ + (1− y) log(1− ŷ))

or negative log-likelihood. Finally, for softmax regression over k classes, we
use the cross entropy loss

L(ŷ, y) = −
k∑

j=1

1{y = j} log ŷj

which is simply negative log-likelihood extended to the multiclass setting.
Note that ŷ is a k-dimensional vector in this case. If we use y to instead
denote the k-dimensional vector of zeros with a single 1 at the lth position,
where the true label is l, we can also express the cross entropy loss as

L(ŷ, y) = −
k∑

j=1

yj log ŷj

1



2

2 Backpropagation

Let’s define one more piece of notation that’ll be useful for backpropagation.1

We will define
δ[`] = ∇z[`]L(ŷ, y)

We can then define a three-step “recipe” for computing the gradients with
respect to every W [`], b[`] as follows:

1. For output layer N , we have

δ[N ] = ∇z[N ]L(ŷ, y)

Sometimes we may want to compute ∇z[N ]L(ŷ, y) directly (e.g. if g[N ]

is the softmax function), whereas other times (e.g. when g[N ] is the
sigmoid function σ) we can apply the chain rule:

∇z[N ]L(ŷ, y) = ∇ŷL(ŷ, y) ◦ (g[N ])′(z[N ])

Note (g[N ])′(z[N ]) denotes the elementwise derivative w.r.t. z[N ].

2. For ` = N − 1, N − 2, . . . , 1, we have

δ[`] = (W [`+1]>δ[`+1]]) ◦ g′(z[`])

3. Finally, we can compute the gradients for layer ` as

∇W [`]J(W, b) = δ[`]a[`−1]>

∇b[`]J(W, b) = δ[`]

where we use ◦ to indicate the elementwise product. Note the above proce-
dure is for a single training example.

You can try applying the above algorithm to logistic regression (N = 1,
g[1] is the sigmoid function σ) to sanity check steps (1) and (3). Recall that
σ′(z) = σ(z) ◦ (1 − σ(z)) and σ(z[1]) is simply a[1]. Note that for logistic
regression, if x is a column vector in Rn×1, then W [1] ∈ R1×n, and hence
∇W [1]J(W, b) ∈ R1×n. Example code for two layers is also given at:

http://cs229.stanford.edu/notes/backprop.py

1These notes are closely adapted from:
http://ufldl.stanford.edu/tutorial/supervised/MultiLayerNeuralNetworks/

Scribe: Ziang Xie


