
CS229 Problem Set #3 Solutions 1

CS 229, Autumn 2015
Problem Set #3 Solutions: Theory & Unsuper-
vised learning

Due at 9:30am on Wednesday, November 11.

Notes: (1) These questions require thought, but they do not require long answers. (2) If you
have a question about this homework, we encourage you to post your question on our Piazza
forum, at https://piazza.com/stanford/fall2015/cs229. (3) If you missed the first lecture
or are unfamiliar with the collaboration or honor code policy, please read the policy on Handout
#1 (available from the course website) before starting work. (4) For problems that require
programming, please include in your submission a printout of your code (with comments) and
any figures that you are asked to plot. (5) Please do not just write the answers but also show
your work. (6) If you are an on-campus (non-SCPD) student, please print, fill out, and include
a copy of the cover sheet (enclosed as the final page of this document), and include the cover
sheet as the first page of your submission.

SCPD students: If you are submitting on time without using late-days, please submit your as-
signments through the SCPD office. Otherwise, please submit your assignments at https://www.
stanford.edu/class/cs229/cgi-bin/submit.php as a single PDF file under 20MB in size.
If you have trouble submitting online, email your submission to cs229-qa@cs.stanford.edu.
However, we strongly recommend using the website submission method, as it will provide confir-
mation of submission and also allow us to track and return your graded homework to you more
easily.

1. [23 points] Uniform convergence

You are hired by CNN to help design the sampling procedure for making CNN’s electoral
predictions for the next presidential election in the (fictitious) country of Elbania.

The country of Elbania is organized into states, and there are only two candidates running
in this election: One from the Elbanian Democrat party and another from the Labor Party
of Elbania. The plan for making our electoral predictions is as follows: We’ll sample m
voters from each state and ask whether they’re voting Democrat. We’ll then publish, for
each state, the estimated fraction of Democrat voters. In this problem, we’ll work out how
many voters we need to sample in order to ensure that we get good predictions with high
probability.

One reasonable goal might be to set m large enough that, with high probability, we obtain
uniformly accurate estimates of the fraction of Democrat voters in every state. But this
might require surveying very many people, which would be prohibitively expensive. So,
we’re instead going to demand only a slightly lower degree of accuracy.

Specifically, we’ll say that our prediction for a state is “highly inaccurate” if the estimated
fraction of Democrat voters differs from the actual fraction of Democrat voters within that
state by more than a tolerance factor γ. CNN knows that viewers will tolerate some small
number of states’ estimates being highly inaccurate; however, CNN’s credibility would be
damaged if CNN reported highly inaccurate estimates for too many states. So, rather than
trying to ensure that all states’ estimates are within γ of the true values (which would

CS229 Problem Set #3 Solutions 2

correspond to no state’s estimate being highly inaccurate), we will instead try only to
ensure that the number of states with highly inaccurate estimates is small.

To formalize the problem, let there be n states, and let m voters be drawn IID from each
state. Let the actual fraction of voters in state i that voted Democrat be ϕi. Also let Xij

(1 ≤ i ≤ n, 1 ≤ j ≤ m) be a binary random variable indicating whether the j-th randomly
chosen voter from state i voted Democrat:

Xij =

{
1 if the jth example from the ith state voted Democrat
0 otherwise.

We assume that the voters correctly disclose their vote during the survey. Thus, for each
value of i, we have that Xij are drawn IID from a Bernoulli(ϕi) distribution. Moreover,
the Xij ’s (for all i, j) are all mutually independent.

After the survey, the fraction of Democrat votes in state i is estimated as:

ϕ̂i =
1

m

m∑
j=1

Xij .

Also, let Zi = 1{|ϕ̂i − ϕi| > γ} be a binary random variable that indicates whether the
prediction in state i was highly inaccurate.

(a) Let ψi be the probability that Zi = 1. Using the Hoeffding inequality, find an upper
bound on ψi.

Answer: A direct application of the Hoeffding inequality yields

ψi ≤ 2e−2γ2m.

(b) In this part, we prove a general result which will be useful for this problem. Let Vi
and Wi (1 ≤ i ≤ k) be Bernoulli random variables, and suppose

E[Vi] = P (Vi = 1) ≤ P (Wi = 1) = E[Wi] ∀i ∈ {1, 2, . . . k}.

Let the Vi’s be mutually independent, and similarly let the Wi’s also be mutually
independent. Prove that, for any value of t, the following holds:

P

(
k∑

i=1

Vi > t

)
≤ P

(
k∑

i=1

Wi > t

)
.

[Hint: One way to do this is via induction on k. If you use a proof by induction, for
the base case (k = 1), you must show that the inequality holds for t < 0, 0 ≤ t < 1,
and t ≥ 1.]

Answer: Prove it by induction.

Base case: Show

P (V1 > t) ≤ P (W1 > t) .

If t < 0, then both probabilities are 1. If t ≥ 1, then both probabilities are 0. Otherwise,
the equation reduces to

CS229 Problem Set #3 Solutions 3

P (V1 = 1) ≤ P (W1 = 1) ,

which holds by our original assumptions.

Inductive step: Assume

P

(
l∑

i=1

Vi > t

)
≤ P

(
l∑

i=1

Wi > t

)
, ∀t.

Then,

P

(
l+1∑
i=1

Vi > t

)

= P (Vl+1 = 1)P

(
l+1∑
i=1

Vi > t
∣∣∣Vl+1 = 1

)
+ P (Vl+1 = 0)P

(
l+1∑
i=1

Vi > t
∣∣∣Vl+1 = 0

)

= P (Vl+1 = 1)P

(
l∑

i=1

Vi > t− 1
∣∣∣Vl+1 = 1

)
+ P (Vl+1 = 0)P

(
l∑

i=1

Vi > t
∣∣∣Vl+1 = 0

)

= P (Vl+1 = 1)P

(
l∑

i=1

Vi > t− 1

)
+ P (Vl+1 = 0)P

(
l∑

i=1

Vi > t

)

= P (Vl+1 = 1)P

(
l∑

i=1

Vi > t− 1

)
+ (1− P (Vl+1 = 1))P

(
l∑

i=1

Vi > t

)

= P (Vl+1 = 1)

(
P

(
l∑

i=1

Vi > t− 1

)
− P

(
l∑

i=1

Vi > t

))
+ P

(
l∑

i=1

Vi > t

)

≤ P (Wl+1 = 1)

(
P

(
l∑

i=1

Vi > t− 1

)
− P

(
l∑

i=1

Vi > t

))
+ P

(
l∑

i=1

Vi > t

)

= P (Wl+1 = 1)P

(
l∑

i=1

Vi > t− 1

)
+ (1− P (Wl+1 = 1)P

(
l∑

i=1

Vi > t

)

= P (Wl+1 = 1)P

(
l∑

i=1

Vi > t− 1

)
+ P (Wl+1 = 0)P

(
l∑

i=1

Vi > t

)

≤ P (Wl+1 = 1)P

(
l∑

i=1

Wi > t− 1

)
+ P (Wl+1 = 0)P

(
l∑

i=1

Wi > t

)

= P

(
l+1∑
i=1

Wi > t

)
.

And the result is proved.

(c) The fraction of states for which our predictions are highly inaccurate is given by
Z = 1

n

∑n
i=1 Zi. Prove a reasonable closed-form upper bound on the probability

P (Z > τ) of being highly inaccurate on more than a fraction τ of the states.

CS229 Problem Set #3 Solutions 4

[Note: There are many possible answers, but to be considered reasonable, your bound
must decrease to zero as m → ∞ (for fixed n and τ > 0). Also, your bound should
either remain constant or decrease as n → ∞ (for fixed m and τ > 0). It is also fine
if, for some values of τ , m and n, your bound just tells us that P (Z > τ) ≤ 1 (the
trivial bound).]

Answer: There are multiple ways to do this problem. We list a couple of them below:

Using Chernoff’s inequality

Let Yi be new Bernoulli random variables with mean µ = 2e−2γ2m. Then we know from
part (a) that P (Zi = 1) ≤ µ = P (Yi = 1). Using the result from the previous part:

P (Z > τ) ≤ P

(
1

n

n∑
i=0

Yi > τ

)

= P

(
1

n

n∑
i=0

Yi − µ > τ − µ

)

≤ P

(∣∣∣∣∣ 1n
n∑

i=0

Yi − µ

∣∣∣∣∣ > τ − µ

)
≤ 2 exp

(
−2(τ − µ)2n

)
,

where the last step follows provided that 0 < τ − µ = τ − 2e−2γ2m, or, equivalently,
m > 1

2γ2 log
(
2
τ

)
. This is because the Chernoff inequality holds for γ > 0, and, in this

problem, the γ from the Chernoff inequality is τ −µ. For fixed τ and m, this bound goes
to zero as n→ ∞. Alternatively, we can also just compute the right side directly, as in

P (Z > τ) ≤ P

(
1

n

n∑
i=0

Yi > τ

)

= P

(
n∑

i=0

Yi > nτ

)

=
n∑

j=k

P

(
n∑

i=0

Yi = j

)

=
n∑

j=k

(
n

j

)
µj(1− µ)n−j

≤
n∑

j=k

(
n

j

)
µj ,

where k is the smallest integer such that k > nτ . For fixed τ and n, observe that as
m→ ∞, µ→ 0, so this bound goes to zero. Therefore,

P (Z > τ) ≤ min

1, 2e−2(τ−µ)2n,
n∑

j=k

(
n

j

)
µj

CS229 Problem Set #3 Solutions 5

has the properties we want.

Using Markov’s inequality
Markov’s inequality states that for any non-negative random variable X and τ > 0,

P (X > τ) ≤ E[X]
τ . From part (a), we have E[Zi] = P (Zi = 1) ≤ 2e−2γ2m, implying

that

P (Z > τ) = P

(
1

n

n∑
i=0

Zi > τ

)

≤
E
[
1
n

∑n
i=0 Zi

]
τ

≤ 2

τ
e−2γ2m.

This bound satisfies the given requirements: As m → ∞, the bound goes to zero; if
n→ ∞, the bound stays constant.

Using Chebyshev’s inequality
Chebyshev’s inequality states that for any random variable X with expected value µ and

finite variance σ2, for any constant τ > 0, P (|X − µ| > τ) ≤ σ2

τ . Let Yi be new

Bernoulli random variables with mean µ = 2e−2γ2m. Then we know from part (a) that
P (Zi = 1) ≤ µ = P (Yi = 1). Using the result from the previous part:

P (Z > τ) ≤ P

(
1

n

n∑
i=0

Yi > τ

)

= P

(
1

n

n∑
i=0

Yi − µ > τ − µ

)

≤ P

(∣∣∣∣∣ 1n
n∑

i=0

Yi − µ

∣∣∣∣∣ > τ − µ

)

≤
Var

[
1
n

∑n
i=0 Yi

]
(τ − µ)2

=
1
n2

∑n
i=0 Var [Yi]

(τ − µ)2

=
n(2e−2γ2m(1− 2e−2γ2m))

n2(τ − µ)2

=
2e−2γ2m(1− 2e−2γ2m)

n(τ − µ)2

≤ 2e−2γ2m

n(τ − µ)2
.

We again require that τ−µ > 0, which means thatm > 1
2γ2 log

(
2
τ

)
, because Chebyshev’s

inequality holds for τ > 0, and, in this problem, the τ for Chebyshev’s inequality is τ −µ.
This version of the bound goes to zero both when m→ ∞ and when n→ ∞.

2. [15 points] More VC dimension

CS229 Problem Set #3 Solutions 6

Let the domain of the inputs for a learning problem be X = R. Consider using hypotheses
of the following form:

hθ(x) = 1{θ0 + θ1x+ θ2x
2 + · · ·+ θdx

d ≥ 0},

and let H = {hθ : θ ∈ Rd+1} be the corresponding hypothesis class. What is the VC
dimension of H? Justify your answer.

You may use the fact that a polynomial of degree d has at most d real roots. When doing
this problem, you should not assume any other non-trivial result (such as that the VC
dimension of linear classifiers in d-dimensions is d + 1) that was not formally proved in
class.]

Answer: The key insight is that if the polynomial does not cross the x-axis (i.e. have a
root) between two points, then it must give the two points the same label.

First, we need to show that there is a set of size d + 1 which H can shatter. We consider
polynomials with d real roots. A subset of the polynomials in H can be written as

±
d∏

i=1

(x− ri),

where ri is the i
th real root. Consider any set of size d+1 that does not contain any duplicate

points. For any labelling of these points, construct a function as follows: If two consecutive
points are labelled differently, set one of the ri to the average of those points. If two consecutive
points are labelled the same, don’t put a root between them. If we haven’t used up all of our
d roots, place them beyond the last point. Finally, choose ± to get the desired labelling.

A more constructive proof of the above is the following: Consider any set of distinct points
x(1), . . . , x(d+1), and let y(1), . . . , y(d+1) ∈ {−1, 1} be any labelling of these points (where we
have used −1 for points which would normally be labelled zero). Then, consider the following
polynomial:

p(x) =
d+1∑
k=1

y(k)
∏
j ̸=k

(
x(j) − x

x(j) − x(k)

)
.

Here, observe that in the above expression, each term of the summation is a polynomial (in
x) of degree d, and hence the overall expression is a polynomial of degree d. Furthermore,
observe that when x = x(i), then the ith term of the summation evaluates to y(i), and all
other terms of the summation evaluate to 0 (since all other terms have a factor (x(i) − x)).
Therefore, p(x(i)) = y(i) for i = 1, . . . , d + 1. This construction is known as a “Lagrange
interpolating polynomial.” Therefore, any labelling of d + 1 points can be realized using a
degree d polynomial.

Second, we need to prove that H can’t shatter a set of size d+ 2. If two points are identical,
we can’t realize any labelling that labels them differently. If all points are unique, we can’t
achieve an alternating labelling because we would need d+ 1 roots.

3. [15 points] LOOCV and SVM

(a) Linear Case. Consider training an SVM using a linear Kernel K(x, z) = xT z on
a training set {(x(i), y(i)) : i = 1, . . . ,m} that is linearly separable, and suppose we

CS229 Problem Set #3 Solutions 7

do not use ℓ1 regularization. Let |SV | be the number of support vectors obtained
when training on the entire training set. (Recall x(i) is a support vector if and only
if αi > 0.) Let ε̂LOOCV denote the leave-one-out cross-validation error of our SVM.
Show that

ε̂LOOCV ≤ |SV |
m

.

Answer: At a high level, the result is a consequence of the following claim (to be
proven below): If x(i) is not a support vector when training on the entire training set,
then the optimal w and b does not change when leaving x(i) out of the training set. Since
the original data are linearly separable and since we are using a hard-margin classifier, the
hypothesis given by the original w and b will not make an error on x(i), and, hence, no
error will be made in the ith step of the LOOCV. Equivalently, the only possible errors in
the LOOCV procedure are made on x(i)’s that are support vectors when training on the

entire training set, and, hence, ε̂LOOCV ≤ 1− |non−SV |
m = |SV |

m , and we are done.

To show the claim, let S = {(x(i), y(i)) : i = 1, . . . ,m}. Let (w∗
S , b

∗
S) and α∗

S denote
the optimal primal and dual solutions for the SVM when training on S. Also, let Si =
S \ {(x(i), y(i))} be the set of training examples when omitting the ith example, and let
(wSi , bSi) and αSi be the primal and dual variables of the optimization problem when
training on Si. Observe that αSi consists of only m− 1 variables, which we’ll denote as
αSi,1, . . . , αSi,i−1, αSi,i+1, . . . , αSi.m.

If x(i) is not a support vector when training on S, then αS,i = 0. To show that w
and b do not change when leaving out (x(i), y(i)), consider the setting of dual variables
α∗
Si,j

= α∗
S,j for each j ̸= i. Because the SVM optimization problem is strongly convex,

the fact that the dual variables do not change implies that the primal variables also do
not change when omitting (x(i), y(i)), as desired.

Here is a more detailed explanation (not required for full credit): Observe (w∗, b∗) and
αSi satisfy the KKT conditions for the SVM optimization problem for training on Si.
In particular, the fact that the derivatives of the Lagrangian with respect to the primal
variables hold is guaranteed by our construction of the dual problem. The remaining
conditions (KKT dual complentarity, primal feasibility, and dual feasibility) follow from
the KKT conditions for verifying that (w∗

S , b
∗
S) and (α∗

S) are optimal when training on
the entire set. From this (and the fact that w∗ and b∗ are unique since the objective
function is strictly convex), we can conclude that w∗ and b∗ do not change when omitting
(x(i), y(i)), as desired.

(b) General Case. Consider a setting similar to in part (a), except that we now run an
SVM using a general (Mercer) kernel. Assume that the data is linearly separable in
the high dimensional feature space corresponding to the kernel. Does the bound in
part (a) on ε̂LOOCV still hold? Justify your answer.

Answer: Yes. The above argument uses only the facts that the optimum of a convex
optimization problem is not affected by leaving out non-active constraints and that the
training data can be perfectly classified by the obtained hypothesis based on training on
the full dataset. The choice of kernel has no influence.

4. [12 points] MAP estimates and weight decay

Consider using a logistic regression model hθ(x) = g(θTx) where g is the sigmoid function,
and let a training set {(x(i), y(i)); i = 1, . . . ,m} be given as usual. The maximum likelihood

CS229 Problem Set #3 Solutions 8

estimate of the parameters θ is given by

θML = argmax
θ

m∏
i=1

p(y(i)|x(i); θ).

If we wanted to regularize logistic regression, then we might put a Bayesian prior on the
parameters. Suppose we chose the prior θ ∼ N (0, τ2I) (here, τ > 0, and I is the n+1-by-
n+ 1 identity matrix) and then found the MAP estimate of θ to be:

θMAP = argmax
θ
p(θ)

m∏
i=1

p(y(i)|x(i), θ).

Prove that
||θMAP||2 ≤ ||θML||2.

[Hint: Consider using a proof by contradiction.]
Remark. For this reason, this form of regularization is sometimes also called weight
decay, since it encourages the weights (meaning parameters) to take on generally smaller
values.

Answer: Assume that

||θMAP||2 > ||θML||2.

Then, we have that

p(θMAP) =
1

(2π)
n+1
2 |τ2I| 12

e−
1

2τ2 (||θMAP||2)2

<
1

(2π)
n+1
2 |τ2I| 12

e−
1

2τ2 (||θML||2)2

= p(θML).

This yields

p(θMAP)
m∏
i=1

p(y(i)|x(i), θMAP) < p(θML)
m∏
i=1

p(y(i)|x(i), θMAP)

≤ p(θML)

m∏
i=1

p(y(i)|x(i), θML),

where the last inequality holds since θML was chosen to maximize
∏m

i=1 p(y
(i)|x(i); θ). However,

this result gives us a contradiction, since θMAP was chosen to maximize
∏m

i=1 p(y
(i)|x(i), θ)p(θ).

5. [15 points] KL divergence and Maximum Likelihood

The Kullback-Leibler (KL) divergence between two discrete-valued distributions P (X), Q(X)
is defined as follows:1

1If P and Q are densities for continuous-valued random variables, then the sum is replaced by an integral,
and everything stated in this problem works fine as well. But for the sake of simplicity, in this problem we’ll just
work with this form of KL divergence for probability mass functions/discrete-valued distributions.

CS229 Problem Set #3 Solutions 9

KL(P∥Q) =
∑
x

P (x) log
P (x)

Q(x)
.

For notational convenience, we assume P (x) > 0, ∀x. (Otherwise, one standard thing to do
is to adopt the convention that “0 log 0 = 0.”) Sometimes, we also write the KL divergence
as KL(P ||Q) = KL(P (X)||Q(X)).

The KL divergence is an asymmetric measure of the distance between 2 probability distri-
butions. In this problem we will prove some basic properties of KL divergence and work out
a relationship between minimizing KL divergence and the maximum likelihood estimation
that we’re familiar with.

(a) Non-negativity. Prove the following:

∀P,Q KL(P∥Q) ≥ 0

and

KL(P∥Q) = 0 if and only if P = Q.

[Hint: You may use the following result, called Jensen’s inequality. If f is a convex
function, and X is a random variable, then E[f(X)] ≥ f(E[X]). Moreover, if f is
strictly convex (f is convex if its Hessian satisfies H ≥ 0; it is strictly convex if H > 0;
for instance f(x) = − log x is strictly convex), then E[f(X)] = f(E[X]) implies that
X = E[X] with probability 1; i.e., X is actually a constant.]

Answer:

−KL(P∥Q) = −
∑
x

P (x) log
P (x)

Q(x)
(1)

=
∑
x

P (x) log
Q(x)

P (x)
(2)

≤ log
∑
x

P (x)
Q(x)

P (x)
(3)

= log
∑
x

Q(x) (4)

= log 1 (5)

= 0, (6)

where all equalities follow from straight forward algebraic manipulation. The inequality
follows from Jensen’s inequality.

To show the second part of the claim, note that log t is a strictly concave function of t.
Using the form of Jensen’s inequality given in the lecture notes, we have equality if and

only if Q(x)
P (x) = E[Q(x)

P (x)] for all x. But since E[Q(x)
P (x)] =

∑
x P (x)

Q(x)
P (x) =

∑
xQ(x) = 1, it

follows that P (x) = Q(x). Hence we have KL(P∥Q) = 0 if and only if P (x) = Q(x)
for all x.

CS229 Problem Set #3 Solutions 10

(b) Chain rule for KL divergence. The KL divergence between 2 conditional distri-
butions P (X|Y), Q(X|Y) is defined as follows:

KL(P (X|Y)∥Q(X|Y)) =
∑
y

P (y)

(∑
x

P (x|y) log P (x|y)
Q(x|y)

)
.

This can be thought of as the expected KL divergence between the corresponding
conditional distributions on x (that is, between P (X|Y = y) and Q(X|Y = y)),
where the expectation is taken over the random y.

Prove the following chain rule for KL divergence:

KL(P (X,Y)∥Q(X,Y)) = KL(P (X)∥Q(X)) +KL(P (Y |X)∥Q(Y |X)).

Answer:

KL(P (X,Y)∥Q(X,Y)) =
∑
x,y

P (x, y) log
P (x, y)

Q(x, y)
(7)

=
∑
x,y

P (x, y) log
P (x)P (y|x)
Q(x)Q(y|x)

(8)

=
∑
x,y

(P (x, y) log
P (x)

Q(x)
+ P (x, y) log

P (y|x)
Q(y|x)

) (9)

=
∑
x,y

P (x, y) log
P (x)

Q(x)
+
∑
x,y

P (x)P (y|x) log P (y|x)
Q(y|x)

(10)

=
∑
x

P (x) log
P (x)

Q(x)
+
∑
x

P (x)
∑
y

P (y|x) log P (y|x)
Q(y|x)

(11)

= KL(P (X)∥Q(X)) (12)

+KL(P (Y |X)∥Q(Y |X)), (13)

where we applied (in order): Definition of KL, definition of conditional probability, log of
product is sum of logs, splitting the summation,

∑
y P (x, y) = P (x), definition of KL.

(c) KL and maximum likelihood.

Consider a density estimation problem, and suppose we are given a training set
{x(i); i = 1, . . . ,m}. Let the empirical distribution be P̂ (x) = 1

m

∑m
i=1 1{x(i) = x}.

(P̂ is just the uniform distribution over the training set; i.e., sampling from the em-
pirical distribution is the same as picking a random example from the training set.)

Suppose we have some family of distributions Pθ parametrized by θ. (If you like, think
of Pθ(x) as an alternative notation for P (x; θ).) Prove that finding the maximum
likelihood estimate for the parameter θ is equivalent to finding Pθ with minimal KL
divergence from P̂ . I.e. prove:

argmin
θ

KL(P̂∥Pθ) = argmax
θ

m∑
i=1

logPθ(x
(i)).

Remark. Consider the relationship between parts (b-c) and multi-variate Bernoulli
Naive Bayes parameter estimation. In the Naive Bayes model we assumed Pθ is of the

CS229 Problem Set #3 Solutions 11

following form: Pθ(x, y) = p(y)
∏n

i=1 p(xi|y). By the chain rule for KL divergence, we
therefore have:

KL(P̂∥Pθ) = KL(P̂ (y)∥p(y)) +
n∑

i=1

KL(P̂ (xi|y)∥p(xi|y)).

This shows that finding the maximum likelihood/minimum KL-divergence estimate
of the parameters decomposes into 2n + 1 independent optimization problems: One
for the class prior distributions p(y) and one for each of the conditional distributions
p(xi|y) for each feature xi given each of the two possible labels for y. Specifically,
finding the maximum likelihood estimates for each of these problems individually
results in also maximizing the likelihood of the joint distribution. (If you know what
Bayesian networks are, a similar remark applies to parameter estimation for them.)

Answer:

argmin
θ

KL(P̂∥Pθ) = argmin
θ

∑
x

(P̂ (x) log P̂ (x)− P̂ (x) logPθ(x)) (14)

= argmin
θ

∑
x

−P̂ (x) logPθ(x) (15)

= argmax
θ

∑
x

P̂ (x) logPθ(x) (16)

= argmax
θ

∑
x

1

m

m∑
i=1

1{x(i) = x} logPθ(x) (17)

= argmax
θ

1

m

m∑
i=1

∑
x

1{x(i) = x} logPθ(x) (18)

= argmax
θ

1

m

m∑
i=1

logPθ(x
(i)) (19)

= argmax
θ

m∑
i=1

logPθ(x
(i)), (20)

where we used in order: Definition of KL, leaving out terms independent of θ, flip sign and
correspondingly flip min-max, definition of P̂ , switching order of summation, definition of
the indicator, and simplification.

6. [20 points] K-means for compression

In this problem, we will apply the K-means algorithm to lossy image compression by
reducing the number of colors used in an image.

The directory /afs/ir.stanford.edu/class/cs229/ps/ps3/ contains a 512x512 image
of a mandrill represented in 24-bit color. This means that, for each of the 262144 pixels
in the image, there are three 8-bit numbers (each ranging from 0 to 255) that represent
the red, green, and blue intensity values for that pixel. The straightforward representation
of this image therefore takes about 262144 × 3 = 786432 bytes (a byte being 8 bits). To
compress the image, we will use K-means to reduce the image to k = 16 colors. More
specifically, each pixel in the image is considered a point in the three-dimensional (r, g, b)-
space. To compress the image, we will cluster these points in color-space into 16 clusters,
and replace each pixel with the closest cluster centroid.

CS229 Problem Set #3 Solutions 12

Follow the instructions below. Be warned that some of these operations can take a while
(several minutes even on a fast computer)!2

(a) Copy mandrill-large.tiff from /afs/ir.stanford.edu/class/cs229/ps/ps3 on the
leland system. Start up MATLAB, and type A = double(imread(’mandrill-large.tiff’));

to read in the image. Now, A is a “three dimensional matrix,” and A(:,:,1), A(:,:,2)
and A(:,:,3) are 512x512 arrays that respectively contain the red, green, and blue
values for each pixel. Enter imshow(uint8(round(A))); to display the image.

Answer: Figure 1 shows the original image of the mandrill.

(b) Since the large image has 262144 pixels and would take a while to cluster, we will in-
stead run vector quantization on a smaller image. Repeat (a) with mandrill-small.tiff.
Treating each pixel’s (r, g, b) values as an element of R3, run K-means3 with 16 clus-
ters on the pixel data from this smaller image, iterating (preferably) to convergence
but in no case for less than 30 iterations. For initialization, set each cluster centroid
to the (r, g, b)-values of a randomly chosen pixel in the image.

Answer: MATLAB code for this problem is given below.

(c) Take the matrix A from mandrill-large.tiff, and replace each pixel’s (r, g, b) values
with the value of the closest cluster centroid. Display the new image, and compare it
visually to the original image. Hand in all your code and a printout of your compressed
image (printing on a black-and-white printer is fine).

Answer: Figure 2 shows the image compressed into 16 colors using K-means run to
convergence, and shows the 16 colors used in the compressed image. (These solutions are
given in a color PostScript file. To see the colors without a color printer, view them with
a program that can display color PostScript, such as ghostview.)

(d) If we represent the image with these reduced (16) colors, by (approximately) what
factor have we compressed the image?

Answer: The original image used 24 bits per pixel. To represent one of 16 colors
requires log216 = 4 bits per pixel. We have therefore achieved a compression factor of
about 24/4 = 6 of the image.

A = double(imread(’mandrill-small.tiff’));

imshow(uint8(round(A)));

% K-means initialization

k = 16;

initmu = zeros(k,3);

for l=1:k,

i = random(’unid’, size(A, 1), 1, 1);

j = random(’unid’, size(A, 2), 1, 1);

initmu(l,:) = double(permute(A(i,j,:), [3 2 1])’);

end;

% Run K-means

mu = initmu;

for iter = 1:200, % usually converges long before 200 iterations

2In order to use the imread and imshow commands in octave, you have to install the Image package from
octave-forge. This package and installation instructions are available at: http://octave.sourceforge.net .

3Please implement K-means yourself rather than using built-in functions from, e.g., MATLAB or octave.

CS229 Problem Set #3 Solutions 13

newmu = zeros(k,3);

nassign = zeros(k,1);

for i=1:size(A,1),

for j=1:size(A,2),

dist = zeros(k,1);

for l=1:k,

d = mu(l,:)’-permute(A(i,j,:), [3 2 1]);

dist(l) = d’*d;

end;

[value, assignment] = min(dist);

nassign(assignment) = nassign(assignment) + 1;

newmu(assignment,:) = newmu(assignment,:) + ...

permute(A(i,j,:), [3 2 1])’;

end; end;

for l=1:k,

if (nassign(l) > 0)

newmu(l,:) = newmu(l,:) / nassign(l);

end;

end;

mu = newmu;

end;

% Assign new colors to large image

bigimage = double(imread(’mandrill-large.tiff’));

imshow(uint8(round(bigimage)));

qimage = bigimage;

for i=1:size(bigimage,1), for j=1:size(bigimage,2),

dist = zeros(k,1);

for l=1:k,

d = mu(l,:)’-permute(bigimage(i,j,:), [3 2 1]);

dist(l) = d’*d;

end;

[value, assignment] = min(dist);

qimage(i,j,:) = ipermute(mu(assignment,:), [3 2 1]);

end; end;

imshow(uint8(round(qimage)));

CS229 Problem Set #3 Solutions 14

Figure 1: The original image of the mandrill.

CS229 Problem Set #3 Solutions 15

Figure 2: The compressed image of the mandrill.

