
CS229 Problem Set #2 1

CS 229, Autumn 2016
Problem Set #2: Naive Bayes, SVMs, and Theory

Due Wednesday, November 2 at 11:00 am on Gradescope.

Notes: (1) These questions require thought, but do not require long answers. Please be as
concise as possible. (2) If you have a question about this homework, we encourage you to post
your question on our Piazza forum, at https://piazza.com/stanford/autumn2016/cs229. (3)
If you missed the first lecture or are unfamiliar with the collaboration or honor code policy, please
read the policy on Handout #1 (available from the course website) before starting work. (4) For
problems that require programming, please include in your submission a printout of your code
(with comments) and any figures that you are asked to plot.

If you are scanning your document by cellphone, please check the Piazza forum for recommended
cellphone scanning apps and best practices.

1. [15 points] Constructing kernels

In class, we saw that by choosing a kernel K(x, z) = φ(x)Tφ(z), we can implicitly map
data to a high dimensional space, and have the SVM algorithm work in that space. One
way to generate kernels is to explicitly define the mapping φ to a higher dimensional space,
and then work out the corresponding K.

However in this question we are interested in direct construction of kernels. I.e., suppose
we have a function K(x, z) that we think gives an appropriate similarity measure for our
learning problem, and we are considering plugging K into the SVM as the kernel function.
However for K(x, z) to be a valid kernel, it must correspond to an inner product in some
higher dimensional space resulting from some feature mapping φ. Mercer’s theorem tells
us that K(x, z) is a (Mercer) kernel if and only if for any finite set {x(1), . . . , x(m)}, the
matrix K is symmetric and positive semidefinite, where the square matrix K ∈ Rm×m is
given by Kij = K(x(i), x(j)).

Now here comes the question: Let K1, K2 be kernels over Rn×Rn, let a ∈ R+ be a positive
real number, let f : Rn 7→ R be a real-valued function, let φ : Rn → Rd be a function
mapping from Rn to Rd, let K3 be a kernel over Rd × Rd, and let p(x) a polynomial over
x with positive coefficients.

For each of the functions K below, state whether it is necessarily a kernel. If you think it
is, prove it; if you think it isn’t, give a counter-example.

(a) [1 points] K(x, z) = K1(x, z) +K2(x, z)

(b) [1 points] K(x, z) = K1(x, z)−K2(x, z)

(c) [1 points] K(x, z) = aK1(x, z)

(d) [1 points] K(x, z) = −aK1(x, z)

(e) [5 points] K(x, z) = K1(x, z)K2(x, z)

(f) [2 points] K(x, z) = f(x)f(z)

(g) [2 points] K(x, z) = K3(φ(x), φ(z))

(h) [2 points] K(x, z) = p(K1(x, z))

https://piazza.com/stanford/autumn2016/cs229


CS229 Problem Set #2 2

[Hint: For part (e), the answer is that the K there is indeed a kernel. You still have to
prove it, though. (This one may be harder than the rest.) This result may also be useful
for another part of the problem.]

2. [10 points] Kernelizing the Perceptron

Let there be a binary classification problem with y ∈ {−1, 1}. The perceptron uses hy-
potheses of the form hθ(x) = g(θTx), where g(z) = sign(z) = 1 if z ≥ 0, −1 otherwise.
In this problem we will consider a stochastic gradient descent-like implementation of the
perceptron algorithm where each update to the parameters θ is made using only one train-
ing example. However, unlike stochastic gradient descent, the perceptron algorithm will
only make one pass through the entire training set. The update rule for this version of the
perceptron algorithm is given by

θ(i+1) :=

{
θ(i) + αy(i+1)x(i+1) if hθ(i)(x

(i+1))y(i+1) < 0

θ(i) otherwise,

where θ(i) is the value of the parameters after the algorithm has seen the first i training
examples. Prior to seeing any training examples, θ(0) is initialized to ~0.

Let K be a Mercer kernel corresponding to some very high-dimensional feature mapping φ.
Suppose φ is so high-dimensional (say,∞-dimensional) that it’s infeasible to ever represent
φ(x) explicitly. Describe how you would apply the “kernel trick” to the perceptron to make
it work in the high-dimensional feature space φ, but without ever explicitly computing φ(x).
[Note: You don’t have to worry about the intercept term. If you like, think of φ as having
the property that φ0(x) = 1 so that this is taken care of.] Your description should specify

(a) How you will (implicitly) represent the high-dimensional parameter vector θ(i), in-
cluding how the initial value θ(0) = ~0 is represented (note that θ(i) is now a vector
whose dimension is the same as the feature vectors φ(x));

(b) How you will efficiently make a prediction on a new input x(i+1). I.e., how you will

compute hθ(i)(x
(i+1)) = g(θ(i)

T
φ(x(i+1))), using your representation of θ(i); and

(c) How you will modify the update rule given above to perform an update to θ on a
new training example (x(i+1), y(i+1)); i.e., using the update rule corresponding to the
feature mapping φ:

θ(i+1) := θ(i) + α1{θ(i)
T
φ(x(i+1))y(i+1) < 0}y(i+1)φ(x(i+1)).

[Hint: our discussion of the representer theorem may be useful.]

3. [30 points] Spam classification

In this problem, we will use the naive Bayes algorithm and an SVM to build a spam
classifier.

In recent years, spam on electronic newsgroups has been an increasing problem. Here, we’ll
build a classifier to distinguish between “real” newsgroup messages, and spam messages.
For this experiment, we obtained a set of spam emails, and a set of genuine newsgroup
messages.1 Using only the subject line and body of each message, we’ll learn to distinguish
between the spam and non-spam.

1Thanks to Christian Shelton for providing the spam email. The non-spam messages are from the 20 news-
groups data at http://www-2.cs.cmu.edu/afs/cs.cmu.edu/project/theo-20/www/data/news20.html.

http://www-2.cs.cmu.edu/afs/cs.cmu.edu/project/theo-20/www/data/news20.html


CS229 Problem Set #2 3

All the files for the problem are in http://cs229.stanford.edu/materials/spam_data.

tgz. Note: Please do not circulate this data outside this class. In order to get the
text emails into a form usable by naive Bayes, we’ve already done some preprocessing on the
messages. You can look at two sample spam emails in the files spam sample original*,
and their preprocessed forms in the files spam sample preprocessed*. The first line in
the preprocessed format is just the label and is not part of the message. The preprocessing
ensures that only the message body and subject remain in the dataset; email addresses
(EMAILADDR), web addresses (HTTPADDR), currency (DOLLAR) and numbers (NUM-
BER) were also replaced by the special tokens to allow them to be considered properly in the
classification process. (In this problem, we’ll going to call the features “tokens” rather than
“words,” since some of the features will correspond to special values like EMAILADDR.
You don’t have to worry about the distinction.) The files news sample original and
news sample preprocessed also give an example of a non-spam mail.

The work to extract feature vectors out of the documents has also been done for you, so you
can just load in the design matrices (called document-word matrices in text classification)
containing all the data. In a document-word matrix, the ith row represents the ith docu-
ment/email, and the jth column represents the jth distinct token. Thus, the (i, j)-entry of
this matrix represents the number of occurrences of the jth token in the ith document.

For this problem, we’ve chosen as our set of tokens considered (that is, as our vocabulary)
only the medium frequency tokens. The intuition is that tokens that occur too often or
too rarely do not have much classification value. (Examples tokens that occur very often
are words like “the,” “and,” and “of,” which occur in so many emails and are sufficiently
content-free that they aren’t worth modeling.) Also, words were stemmed using a standard
stemming algorithm; basically, this means that “price,” “prices” and “priced” have all been
replaced with “price,” so that they can be treated as the same word. For a list of the tokens
used, see the file TOKENS LIST.

Since the document-word matrix is extremely sparse (has lots of zero entries), we have
stored it in our own efficient format to save space. You don’t have to worry about this
format.2 The file readMatrix.m provides the readMatrix function that reads in the
document-word matrix and the correct class labels for the various documents. Code in
nb train.m and nb test.m shows how readMatrix should be called. The documentation
at the top of these two files will tell you all you need to know about the setup.

(a) [11 points] Implement a naive Bayes classifier for spam classification, using the multi-
nomial event model and Laplace smoothing.

You should use the code outline provided in nb train.m to train your parameters,
and then use these parameters to classify the test set data by filling in the code in
nb test.m. You may assume that any parameters computed in nb train.m are in
memory when nb test.m is executed, and do not need to be recomputed (i.e., that
nb test.m is executed immediately after nb train.m) 3.

Train your parameters using the document-word matrix in MATRIX.TRAIN, and then
report the test set error on MATRIX.TEST.

Remark. If you implement naive Bayes the straightforward way, you’ll find that
the computed p(x|y) =

∏
i p(xi|y) often equals zero. This is because p(x|y), which is

2Unless you’re not using Matlab/Octave, in which case feel free to ask us about it. We have provided Julia
code to read the file in MatrixReading.jl.

3Matlab note: If a .m file doesn’t begin with a function declaration, the file is a script. Variables in a script
are put into the global namespace, unlike with functions.

http://cs229.stanford.edu/materials/spam_data.tgz
http://cs229.stanford.edu/materials/spam_data.tgz


CS229 Problem Set #2 4

the product of many numbers less than one, is a very small number. The standard
computer representation of real numbers cannot handle numbers that are too small,
and instead rounds them off to zero. (This is called “underflow.”) You’ll have to find
a way to compute naive Bayes’ predicted class labels without explicitly representing
very small numbers such as p(x|y). [Hint: Think about using logarithms.]

(b) [3 points] Intuitively, some tokens may be particularly indicative of an email being in
a particular class. We can try to get an informal sense of how indicative token i is for
the SPAM class by looking at:

log
p(xj = i|y = 1)

p(xj = i|y = 0)
= log

(
P (token i|email is SPAM)

P (token i|email is NOTSPAM)

)
.

Using the parameters fit in part (a), find the 5 tokens that are most indicative of
the SPAM class (i.e., have the highest positive value on the measure above). The
numbered list of tokens in the file TOKENS LIST should be useful for identifying the
words/tokens.

(c) [3 points] Repeat part (a), but with training sets of size ranging from 50, 100, 200,
. . . , up to 1400, by using the files MATRIX.TRAIN.*. Plot the test error each time (use
MATRIX.TEST as the test data) to obtain a learning curve (test set error vs. training
set size). You may need to change the call to readMatrix in nb train.m to read the
correct file each time. Which training-set size gives the best test set error?

(d) [11 points] Train an SVM on this dataset using stochastic gradient descent and the
radial basis function (also known as the Gaussian) kernel, which sets

K(x, z) = exp

(
− 1

2τ2
‖x− z‖22

)
.

In this case, recall that (as proved in class) the objective with kernel matrix K =
[K(1) · · · K(m)] ∈ Rm×m is given by

J(α) =
1

m

m∑
i=1

[
1− y(i)K(i)Tα

]
+

+
λ

2
αTKα

where [t]+ = max{t, 0} is the positive part function. In this case, the gradient (actu-
ally, this is known as a subgradient) of the individual loss terms is

∇α
[
1− y(i)K(i)α

]
+

=

{
−y(i)K(i) if y(i)K(i)Tα < 1

0 otherwise.

In your SVM training, you should perform stochastic gradient descent, where in each
iteration you choose an index i ∈ {1, . . . ,m} uniformly at random, for a total of
40 ·m steps, where m is the training set size, and your kernel should use τ = 8 and
regularization multiplier λ = 1

64m . For this part of the problem, you should also

replace each training or test point x(i) with a zero-one vector z(i), where z
(i)
j = 1 if

x
(i)
j > 0 and z

(i)
j = 0 if x

(i)
j = 0. Initialize your SGD procedure at α = 0.

The output of your training code, which you should implement in svm test.m, should
be the α vector that is the average of all the α vectors that your iteration updates.
At iteration t of stochastic gradient descent you should use stepsize 1/

√
t.



CS229 Problem Set #2 5

Similar to part (c), train an SVM with training set sizes 50, 100, 200, . . . , 1400,
by using the file MATRIX.TRAIN.50 and so on. Plot the test error each time, using
MATRIX.TEST as the test data.

(A few hints for more efficient Matlab code: you should try to vectorize creation of
the Kernel matrix, and you should call the method full to make the matrix non-
sparse, which will make the method faster. In addition, the training data uses labels
in {0, 1}, so you should change the output of the readMatrix method to have labels
y ∈ {−1, 1}.)

(e) [2 points] How do naive Bayes and Support Vector Machines compare (in terms of
generalization error) as a function of the training set size?

4. [20 points] Properties of VC dimension

In this problem, we investigate a few properties of the Vapnik-Chervonenkis dimension,
mostly relating to how VC(H) increases as the set H increases. For each part of this
problem, you should state whether the given statement is true, and justify your answer
with either a formal proof or a counter-example.

(a) Let two hypothesis classes H1 and H2 satisfy H1 ⊆ H2. Prove or disprove: VC(H1) ≤
VC(H2).

(b) Let H1 = H2 ∪{h1, . . . , hk}. (I.e., H1 is the union of H2 and some set of k additional
hypotheses.) Prove or disprove: VC(H1) ≤ VC(H2) + k. [Hint: You might want to
start by considering the case of k = 1.]

(c) Let H1 = H2 ∪H3. Prove or disprove: VC(H1) ≤ VC(H2) + VC(H3).

5. [20 points] Training and testing on different distributions

In the discussion in class about learning theory, a key assumption was that we trained
and tested our learning algorithms on the same distribution D. In this problem, we’ll
investigate one special case of training and testing on different distributions. Specifically,
we will consider what happens when the training labels are noisy, but the test labels are
not.

Consider a binary classification problem with labels y ∈ {0, 1}, and let D be a distribution
over (x, y), that we’ll think of as the original, “clean” or “uncorrupted” distribution. Define
Dτ to be a “corrupted” distribution over (x, y) which is the same as D, except that the
labels y have some probability 0 ≤ τ < 0.5 of being flipped. Thus, to sample from Dτ ,
we would first sample (x, y) from D, and then with probability τ (independently of the
observed x and y) replace y with 1− y. Note that D0 = D.

The distribution Dτ models a setting in which an unreliable human (or other source)
is labeling your training data for you, and on each example he/she has a probability τ
of mislabeling it. Even though our training data is corrupted, we are still interested in
evaluating our hypotheses with respect to the original, uncorrupted distribution D.

We define the generalization error with respect to Dτ to be

ετ (h) = P(x,y)∼Dτ [h(x) 6= y].

Note that ε0(h) is the generalization error with respect to the “clean” distribution; it is
with respect to ε0 that we wish to evaluate our hypotheses.



CS229 Problem Set #2 6

(a) For any hypothesis h, the quantity ε0(h) can be calculated as a function of ετ (h) and
τ . Write down a formula for ε0(h) in terms of ετ (h) and τ , and justify your answer.

(b) Let |H| be finite, and suppose our training set S = {(x(i), y(i)); i = 1, . . . ,m} is
obtained by drawing m examples IID from the corrupted distribution Dτ . Suppose
we pick h ∈ H using empirical risk minimization: ĥ = arg minh∈H ε̂S(h). Also, let
h∗ = arg minh∈H ε0(h).

Let any δ, γ > 0 be given. Prove that for

ε0(ĥ) ≤ ε0(h∗) + 2γ

to hold with probability 1− δ, it suffices that

m ≥ 1

2(1− 2τ)2γ2
log

2|H|
δ

.

Remark. This result suggests that, roughly, m examples that have been corrupted at
noise level τ are worth about as much as (1− 2τ)2m uncorrupted training examples.
This is a useful rule-of-thumb to know if you ever need to decide whether/how much to
pay for a more reliable source of training data. (If you’ve taken a class in information
theory, you may also have heard that (1−H(τ))m is a good estimate of the information
in the m corrupted examples, where H(τ) = −(τ log2 τ + (1 − τ) log2(1 − τ)) is the
“binary entropy” function. And indeed, the functions (1−2τ)2 and 1−H(τ) are quite
close to each other.)

(c) Comment briefly on what happens as τ approaches 0.5.

6. [19 points] Boosting and high energy physics

In class, we discussed boosting algorithms and decision stumps. In this problem, we explore
applications of these ideas to detect particle emissions in a high-energy particle accelerator.
In high energy physics, such as at the Large Hadron Collider (LHC), one accelerates small
particles to relativistic speeds and smashes them into one another, tracking the emitted
particles. The goal in these problems is to detect the emission of certain interesting particles
based on other observed particles and energies.4 In this problem, we explore the application
of boosting to a high energy physics problem, where we use decision stumps applied to
18 low- and high-level physics-based features. All data for the problem is available at
http://cs229.stanford.edu/materials/boost_data.tgz.

For the first part of the problem, we explore how decision stumps based on thresholding can
provide a weak-learning guarantee. In particular, we show that for real-valued attributes
x, there is an edge γ > 0 that decision stumps guarantee. Recall that thresholding-based
decision stumps are functions indexed by a threshold s and sign +/−, such that

φs,+(x) =

{
1 if x ≥ s
−1 if x < s

and φs,−(x) =

{
−1 if x ≥ s
1 if x < s.

That is, φs,+(x) = −φs,−(x). We assume for simplicity in the theoretical parts of this
exercise that our input attribute vectors x ∈ R, that is, they are one-dimensional. Now,
we would like guarantee that there is some γ > 0 and a threshold s such that, for any

4For more, see the following paper: Baldi, Sadowski, Whiteson. Searching for Exotic Particles in High-Energy
Physics with Deep Learning. Nature Communications 5, Article 4308. http://arxiv.org/abs/1402.4735.

http://cs229.stanford.edu/materials/boost_data.tgz
http://arxiv.org/abs/1402.4735


CS229 Problem Set #2 7

distribution p on the training set {x(i), y(i)}mi=1 (where y(i) ∈ {−1,+1} and x(i) ∈ R, and
we recall that p is a distribution on the training set if

∑m
i=1 pi = 1 and pi ≥ 0 for each i)

we have

m∑
i=1

pi1
{
y(i) 6= φs,+(x(i))

}
≤ 1

2
− γ or

m∑
i=1

pi1
{
y(i) 6= φs,−(x(i))

}
≤ 1

2
− γ.

For simplicity, we assume that all of the x(i) are distinct, so that none of them are equal. We
also assume (without loss of generality, but this makes the problem notationally simpler)
that

x(1) > x(2) > · · · > x(m).

(a) [3 points] Show that for each threshold s, there is some m0(s) ∈ {0, 1, . . . ,m} such
that

m∑
i=1

pi1
{
φs,+(x(i)) 6= y(i)

}
=

1

2
− 1

2

m0(s)∑
i=1

y(i)pi −
m∑

i=m0(s)+1

y(i)pi


and

m∑
i=1

pi1
{
φs,−(x(i)) 6= y(i)

}
=

1

2
− 1

2

 m∑
i=m0(s)+1

y(i)pi −
m0(s)∑
i=1

y(i)pi


Treat sums over empty sets of indices as zero, so that

∑0
i=1 ai = 0 for any ai, and

similarly
∑m
i=m+1 ai = 0.

(b) [3 points] Define, for each m0 ∈ {0, 1, . . . ,m},

f(m0) =

m0∑
i=1

y(i)pi −
m∑

i=m0+1

y(i)pi.

Show that there exists some γ > 0, which may depend on the training set size m (but
should not depend on p), such that for any set of probabilities p on the training set,
where pi ≥ 0 and

∑m
i=1 pi = 1, we can find m0 with

|f(m0)| ≥ 2γ.

What is your γ?

(Hint: Consider the difference f(m0)− f(m0 + 1).)

(c) [2 points] Based on your answer to part (6b), what edge can thresholded decision
stumps guarantee on any training set {x(i), y(i)}mi=1, where the raw attributes x(i) ∈ R
are all distinct? Recall that the edge of a weak classifier φ : R → {−1, 1} is the
constant γ ∈ [0, 12 ] such that

m∑
i=1

pi1
{
φ(x(i)) 6= y(i)

}
≤ 1

2
− γ.

Can you give an upper bound on the number of thresholded decision stumps required
to achieve zero error on a given training set?



CS229 Problem Set #2 8

(d) [11 points] Now you will implement boosting on data developed from a physics-
based simulation of a high-energy particle accelerator. We provide two datasets,
boosting-train.csv and boosting-test.csv, which consist of training data and
test data for a binary classification problem on which you will apply boosting tech-
niques. (For those not using Matlab, the files are comma-separated files, the first
column of which consists of binary ±1-labels y(i), the remaining 18 columns are the
raw attribtues.) The file load data.m, which we provide, loads the datasets into
memory, storing training data and labels in appropriate vectors and matrices, and
then performs boosting using your implemented code, and plots the results.

i. [5 points] Implement a method that finds the optimal thresholded decision stump
for a training set {x(i), y(i)}mi=1 and distribution p ∈ Rm+ on the training set. In
particular, fill out the code in the method find best threshold.m. Include your
code in your solution.

ii. [2 points] Implement boosted decision stumps by filling out the code in the method
stump booster.m. Your code should implement the weight updating at each
iteration t = 1, 2, . . . to find the optimal value θt given the feature index and
threshold. Include your code in your solution.

iii. [2 points] Implement random boosting, where at each step the choice of decision
stump is made completely randomly. In particular, at iteration t random boosting
chooses a random index j ∈ {1, 2, . . . , n}, then chooses a random threshold s from

among the data values {x(i)j }mi=1, and then chooses the tth weight θt optimally
for this (random) classifier φs,+(x) = sign(xj − s). Implement this by filling out
the code in random booster.m.

iv. [2 points] Run the method load data.m with your implemented boosting meth-
ods. Include the plots this method displays, which show the training and test
error for boosting at each iteration t = 1, 2, . . .. Which method is better?

[A few notes: we do not expect boosting to get classification accuracy better than
approximately 80% for this problem.]


