
CS229 Problem Set #4 Solutions 1

CS 229, Autumn 2015
Problem Set #4 Solutions: Unsupervised learning
& RL

Due in class (9:30am) on Wednesday, December 2.

Notes: (1) These questions require thought, but do not require long answers. Please be as
concise as possible. (2) If you have a question about this homework, we encourage you to post
your question on our Piazza forum, at https://piazza.com/stanford/fall2015/cs229. (3) If
you missed the first lecture or are unfamiliar with the collaboration or honor code policy, please
read the policy on Handout #1 (available from the course website) before starting work. (4)
For problems that require programming, please include in your submission a printout of your
code (with comments) and any figures that you are asked to plot. (5) If you are an on-campus
(non-SCPD) student, please print, fill out, and include a copy of the cover sheet (enclosed as the
final page of this document), and include the cover sheet as the first page of your submission.

SCPD students: If you are submitting on time without using late-days, please submit your
assignments through the SCPD office. Consult Piazza post 35 for details. Otherwise, please
submit your assignments at https://www.stanford.edu/class/cs229/cgi-bin/submit.php

as a single PDF file under 20MB in size. If you have trouble submitting online, you can also
email your submission to cs229-qa@cs.stanford.edu. However, we strongly recommend using
the website submission method as it will provide confirmation of submission, and also allow us
to track and return your graded homework to you more easily.

If you are scanning your document by cellphone, please check the Piazza forum for recommended
cellphone scanning apps and best practices.

1. [11 points] EM for MAP estimation

The EM algorithm that we talked about in class was for solving a maximum likelihood
estimation problem in which we wished to maximize

m∏
i=1

p(x(i); θ) =

m∏
i=1

∑
z(i)

p(x(i), z(i); θ),

where the z(i)’s were latent random variables. Suppose we are working in a Bayesian
framework, and wanted to find the MAP estimate of the parameters θ by maximizing(

m∏
i=1

p(x(i)|θ)

)
p(θ) =

(
m∏
i=1

∑
z(i)

p(x(i), z(i)|θ)

)
p(θ).

Here, p(θ) is our prior on the parameters. Generalize the EM algorithm to work for MAP
estimation. You may assume that log p(x, z|θ) and log p(θ) are both concave in θ, so
that the M-step is tractable if it requires only maximizing a linear combination of these
quantities. (This roughly corresponds to assuming that MAP estimation is tractable when
x, z is fully observed, just like in the frequentist case where we considered examples in
which maximum likelihood estimation was easy if x, z was fully observed.)

CS229 Problem Set #4 Solutions 2

Make sure your M-step is tractable, and also prove that
∏m
i=1 p(x

(i)|θ)p(θ) (viewed as a
function of θ) monotonically increases with each iteration of your algorithm.

Answer: We will derive the EM updates the same way as done in class for maximum
likelihood estimation. Monotonic increase with every iteration is guaranteed because of the
same reason: in the E-step we compute a lower bound that is tight at the current estimate
of θ, in the M-step we optimize θ for this lower bound, so we are guaranteed to improve the
actual objective function.

log

m∏
i=1

p(x(i)|θ)p(θ) = log p(θ) +

m∑
i=1

log p(x(i)|θ)

= log p(θ) +

m∑
i=1

log
∑
z(i)

p(x(i), z(i)|θ)

= log p(θ) +

m∑
i=1

log
∑
z(i)

Qi(z
(i))

p(x(i), z(i)|θ)
Qi(z(i))

≥ log p(θ) +

m∑
i=1

∑
z(i)

Qi(z
(i)) log

p(x(i), z(i)|θ)
Qi(z(i))

,

where we just did straightforward substitutions and rewritings, and the last step is given by
Jensen’s inequality. Requiring the inequality to be tight, gives us the E-step:

Qi(z
(i)) = p(z(i)|x(i); θ).

For the M-step we maximize the lower bound, i.e.

θ = arg max
θ

[
log p(θ) +

m∑
i=1

∑
z(i)

Qi(z
(i)) log

p(x(i), z(i)|θ)
Qi(z(i))

]
.

The M-step is tractable, since it only requires maximizing a linear combination of tractable
concave terms log p(x, z|θ) and log p(θ).

2. [22 points] EM application

Consider the following problem. There are P papers submitted to a machine learning
conference. Each of R reviewers reads each paper, and gives it a score indicating how good
he/she thought that paper was. We let x(pr) denote the score that reviewer r gave to paper
p. A high score means the reviewer liked the paper, and represents a recommendation from
that reviewer that it be accepted for the conference. A low score means the reviewer did
not like the paper.

We imagine that each paper has some “intrinsic,” true value that we denote by µp, where a
large value means it’s a good paper. Each reviewer is trying to estimate, based on reading
the paper, what µp is; the score reported x(pr) is then reviewer r’s guess of µp.

However, some reviewers are just generally inclined to think all papers are good and tend
to give all papers high scores; other reviewers may be particularly nasty and tend to give
low scores to everything. (Similarly, different reviewers may have different amounts of
variance in the way they review papers, making some reviewers more consistent/reliable

CS229 Problem Set #4 Solutions 3

than others.) We let νr denote the “bias” of reviewer r. A reviewer with bias νr is one
whose scores generally tend to be νr higher than they should be.

All sorts of different random factors influence the reviewing process, and hence we will use
a model that incorporates several sources of noise. Specifically, we assume that reviewers’
scores are generated by a random process given as follows:

y(pr) ∼ N (µp, σ
2
p),

z(pr) ∼ N (νr, τ
2
r),

x(pr)|y(pr), z(pr) ∼ N (y(pr) + z(pr), σ2).

The variables y(pr) and z(pr) are independent; the variables (x, y, z) for different paper-
reviewer pairs are also jointly independent. Also, we only ever observe the x(pr)’s; thus,
the y(pr)’s and z(pr)’s are all latent random variables.

We would like to estimate the parameters µp, σ
2
p, νr, τ

2
r . If we obtain good estimates of

the papers’ “intrinsic values” µp, these can then be used to make acceptance/rejection
decisions for the conference.

We will estimate the parameters by maximizing the marginal likelihood of the data {x(pr); p =
1, . . . , P, r = 1, . . . , R}. This problem has latent variables y(pr) and z(pr), and the max-
imum likelihood problem cannot be solved in closed form. So, we will use EM. Your
task is to derive the EM update equations. Your final E and M step updates should
consist only of addition/subtraction/multiplication/division/log/exp/sqrt of scalars; and
addition/subtraction/multiplication/inverse/determinant of matrices. For simplicity, you
need to treat only {µp, σ2

p; p = 1 . . . P} and {νr, τ2
r ; r = 1 . . . R} as parameters. I.e. treat

σ2 (the conditional variance of x(pr) given y(pr) and z(pr)) as a fixed, known constant.

(a) In this part, we will derive the E-step:

(i) The joint distribution p(y(pr), z(pr), x(pr)) has the form of a multivariate Gaussian
density. Find its associated mean vector and covariance matrix in terms of the pa-
rameters µp, σ

2
p, νr, τ

2
r , and σ2.

[Hint: Recognize that x(pr) can be written as x(pr) = y(pr) + z(pr) + ε(pr), where
ε(pr) ∼ N (0, σ2) is independent Gaussian noise.]

(ii) Derive an expression for Qpr(y
(pr), z(pr)) = p(y(pr), z(pr)|x(pr)) (E-step), using the

rules for conditioning on subsets of jointly Gaussian random variables (see the notes
on Factor Analysis).

(b) Derive the M-step updates to the parameters {µp, νr, σ2
p, τ

2
r }. [Hint: It may help to

express the lower bound on the likelihood in terms of an expectation with respect to
(y(pr), z(pr)) drawn from a distribution with density Qpr(y

(pr), z(pr)).]

Remark. In a recent machine learning conference, John Platt (whose SMO algorithm
you’ve seen) implemented a method quite similar to this one to estimate the papers’ true
scores µp. (There, the problem was a bit more complicated because not all reviewers
reviewed every paper, but the essential ideas are the same.) Because the model tried to
estimate and correct for reviewers’ biases νr, its estimates of µp were significantly more
useful for making accept/reject decisions than the reviewers’ raw scores for a paper.

Answer:

Let Θ denote the whole set of parameters we are estimating, then the EM steps for our problem
are (at a high level):

CS229 Problem Set #4 Solutions 4

(a) (E-step) For each p, r, set Qpr(y
(pr), z(pr)) = p(y(pr), z(pr)|x(pr); θ).

(b) (M-step) Set Θ = arg maxΘ

∑P
p=1

∑R
r=1EQpr(Y (pr),Z(pr)) log p(x(pr), Y (pr), Z(pr); Θ).

Now it’s a matter of working out how these updates can actually be computed.

For the E-step, if we use Bayes’s Rule to compute p(y(pr), z(pr)|x(pr)), then we’ll get integrals
of Gaussians in the denominator, which are tough to compute. Instead, observe that

p(y(pr), z(pr), x(pr)) = p(y(pr), z(pr))p(x(pr)|y(pr), z(pr)) = p(y(pr))p(z(pr))p(x(pr)|y(pr), z(pr))

is the product of three Gaussian densities, so it is itself a multivariate Gaussian density. There-
fore, the joint distribution p(y(pr), z(pr), x(pr)) is some type of normal distribution so we can
use the rules for conditioning Gaussians to compute the conditional. To get a form for the joint
density, we’ll exploit the fact that a multivariate Gaussian density is fully parameterized by its
mean vector and covariance matrix.

• To compute the mean vector, we’ll rewrite the x(pr) in the following way: x(pr) = y(pr) +
z(pr)+ε(pr), where ε(pr) ∼ N (0, σ2) is independent Gaussian noise.1 Then, E[y(pr)] = µp,
E[z(pr)] = νr and

E[x(pr)] = E[y(pr) + z(pr) + ε(pr)] = E[y(pr)] + E[z(pr)] + E[ε(pr)]

= µp + νr + 0 = µp + νr.

• To compute the covariance matrix, observe that Var(y(pr)) = σ2
p, Var(z(pr)) = τ2

r , and

Cov(y(pr), z(pr)) = Cov(z(pr), y(pr)) = 0 (since y(pr) and z(pr) are independent). Also,
since y(pr), z(pr), and ε(pr) are independent, we have

Var(x(pr)) = Var(y(pr) + z(pr) + ε(pr)) = Var(y(pr)) + Var(z(pr)) + Var(ε(pr))

= σ2
p + τ2

r + σ2.

Finally,

Cov(y(pr), x(pr)) = Cov(x(pr), y(pr))

= Cov(y(pr) + z(pr) + ε(pr), y(pr))

= Cov(y(pr), y(pr)) + Cov(z(pr), y(pr)) + Cov(ε(pr), y(pr))

= σ2
p + 0 + 0 = σ2

p.

where the second to last equality follows from independence of y(pr), z(pr) and ε(pr).
Similarly, we can show that Cov(z(pr), x(pr)) = Cov(x(pr), z(pr)) = τ2

r .

This allows us to write

y(pr), z(pr), x(pr) ∼ N

 µp
νr

µp + νr

 ,
 σ2

p 0 σ2
p

0 τ2
r τ2

r

σ2
p τ2

r σ2
p + τ2

r + σ2

1To see why this follows from the definition in the problem statement, observe that the probability that

ε(pr) = x(pr) − y(pr) − z(pr) takes on any specific value ε is p(ε(pr) = ε|y(pr), z(pr)) = p(x(pr) − y(pr) − z(pr) =
ε|y(pr), z(pr)) = p(x(pr) = ε + y(pr) + z(pr)|y(pr), z(pr)) = 1√

2πσ
exp(− 1

2σ2 ε
2) which does not depend on either

y(pr) or z(pr); hence ε(pr) can be regarded as independent zero-mean Gaussian noise with σ2 variance.

CS229 Problem Set #4 Solutions 5

Now we can use the standard results for conditioning on subsets of variables for Gaussians
(from the Factor Analysis notes) to obtain:

Qpr(y
(pr), z(pr)) = N

([
µpr,Y
µpr,Z

]
,

[
Σpr,Y Y Σpr,Y Z
Σpr,ZY Σpr,ZZ

])
where

µpr =

[
µpr,Y
µpr,Z

]
=

µp +
σ2
p

σ2 + σ2
p + τ2

r

(x(pr) − µp − νr)

νr +
τ2
r

σ2 + σ2
p + τ2

r

(x(pr) − µp − νr)

 (1)

Σpr =

[
Σpr,Y Y Σpr,Y Z
Σpr,ZY Σpr,ZZ

]
=

1

σ2
p + τ2

r + σ2

[
σ2
p(τ2

r + σ2) −σ2
pτ

2
r

−σ2
pτ

2
r τ2

r (σ2
p + σ2)

]
. (2)

For the M-step, an important realization is that the Qpr distribution is defined in terms of
Θt, while we want to choose the parameters for the next time step, Θt+1. This means that
the parameters of the Qpr distributions are constant in terms of the parameters we wish to
maximize. Maximizing the expected log-likelihood, we have (letting EQ[·] denote expectations

with respect to Qpr(y
(pr), z(pr)) for each p and r, respectively),

Θ = arg max
Θ

P∑
p=1

R∑
r=1

EQ log p(x(pr), y(pr), z(pr); Θ)

= arg max
Θ

P∑
p=1

R∑
r=1

EQ log

[
1√
2πσ

e
− 1

2σ2
(x(pr)−y(pr)−z(pr))2 1√

2πσp
e
− 1

2σ2p
(y(pr)−µp)2 1√

2πτr
e
− 1

2τ2r
(z(pr)−νr)2

]

= arg max
Θ

P∑
p=1

R∑
r=1

EQ

[
log

1

(2π)3/2σσpτr
− 1

2σ2
(x(pr) − y(pr) − z(pr))2 − 1

2σ2
p

(y(pr) − µp)2 − 1

2τ2
r

(y(pr) − νr)2

]

= arg max
Θ

P∑
p=1

R∑
r=1

EQ

[
log

1

σpτr
− 1

2σ2
p

(y(pr) − µp)2 − 1

2τ2
r

(z(pr) − νr)2

]

= arg max
Θ

P∑
p=1

R∑
r=1

EQ

[
log

1

σpτr
− 1

2σ2
p

((y(pr))2 − 2y(pr)µp + µ2
p)−

1

2τ2
r

((z(pr))2 − 2z(pr)νr + ν2
r)

]

= arg max
Θ

P∑
p=1

R∑
r=1

[
log

1

σpτr
− 1

2σ2
p

(EQ[(y(pr))2]− 2EQ[y(pr)]µp + µ2
p)−

1

2τ2
r

(EQ[(z(pr))2]− 2EQ[z(pr)]νr + ν2
r)

]

= arg max
Θ

P∑
p=1

R∑
r=1

[
log

1

σpτr
− 1

2σ2
p

(Σpr,Y Y + µ2
pr,Y − 2µpr,Y µp + µ2

p)−
1

2τ2
r

(Σpr,ZZ + µ2
pr,Z − 2µpr,Zνr + ν2

r)

]
.

where the equality in the last line follows from EQ[y(pr)] = µpr,Y and EQ[(y(pr))2] =

(EQ[(y(pr))2] − EQ[y(pr)]2) + EQ[y(pr)]2 = Σpr,Y Y + µ2
pr,Y (and similarly for EQ[z(pr)] and

CS229 Problem Set #4 Solutions 6

EQ[(z(pr))2]). Setting derivatives w.r.t. parameters µp, νr, σp, τr to 0,

− 1

2σ2
p

R∑
r=1

(2µp − 2µpr,Y) = 0 =⇒ µp =
1

R

R∑
r=1

µpr,Y (3)

− 1

2τ2
r

P∑
p=1

(2νr − 2µpr,Z) = 0 =⇒ νr =
1

P

P∑
p=1

µpr,Z (4)

R∑
r=1

[
− 1

σp
+

1

σ3
p

(Σpr,Y Y + µ2
pr,Y − 2µpr,Y µp + µ2

p)

]
= 0 =⇒ σ2

p =
1

R

R∑
r=1

(Σpr,Y Y + µ2
pr,Y − 2µpr,Y µp + µ2

p)

(5)

P∑
p=1

[
− 1

τr
+

1

τ3
r

(Σpr,ZZ + µ2
pr,Z − 2µpr,Zνr + ν2

r)

]
= 0 =⇒ τ2

r =
1

P

P∑
p=1

(Σpr,ZZ + µ2
pr,Z − 2µpr,Zνr + ν2

r)

(6)

Using the above results, we can restate our E and M steps in terms of actual computations:

(a) (E-step) For each p, r, compute µpr,Σpr using equations (1),(2)

(b) (M-step) Compute µp, νr, σ
2
p, τ

2
r using equations (3), (4), (5), (6).

3. [14 points] PCA

In class, we showed that PCA finds the “variance maximizing” directions onto which to
project the data. In this problem, we find another interpretation of PCA.

Suppose we are given a set of points {x(1), . . . , x(m)}. Let us assume that we have as usual
preprocessed the data to have zero-mean and unit variance in each coordinate. For a given
unit-length vector u, let fu(x) be the projection of point x onto the direction given by u.
I.e., if V = {αu : α ∈ R}, then

fu(x) = arg min
v∈V
||x− v||2.

Show that the unit-length vector u that minimizes the mean squared error between pro-
jected points and original points corresponds to the first principal component for the data.
I.e., show that

arg min
u:uTu=1

m∑
i=1

‖x(i) − fu(x(i))‖22 .

gives the first principal component.

Remark. If we are asked to find a k-dimensional subspace onto which to project the
data so as to minimize the sum of squares distance between the original data and their
projections, then we should choose the k-dimensional subspace spanned by the first k
principal components of the data. This problem shows that this result holds for the case
of k = 1.

CS229 Problem Set #4 Solutions 7

Answer: First note we have fu(x(i)) = uTxu.2 So we have to solve the following problem:

arg min
u:uTu=1

m∑
i=1

‖x(i) − fu(x(i))‖22 = arg min
u:uTu=1

m∑
i=1

‖x(i) − uTx(i)u‖22

= arg min
u:uTu=1

m∑
i=1

(x(i) − uTx(i)u)T (x(i) − uTx(i)u)

= arg min
u:uTu=1

m∑
i=1

(x(i)Tx(i) − 2(uTx(i))2 + uTu(uTx(i))2)

= arg min
u:uTu=1

m∑
i=1

(x(i)Tx(i) − 2(uTx(i))2 + (uTx(i))2)

= arg min
u:uTu=1

m∑
i=1

−(uTx(i))2

= arg max
u:uTu=1

uT

(
m∑
i=1

x(i)x(i)T

)
u

And the last line corresponds to the optimization problem that defines the first principal com-
ponent.

4. [12 points] Independent components analysis

For this question you will implement the Bell and Sejnowski ICA algorithm, as covered in
class. The files you’ll need for this problem are in /afs/ir/class/cs229/ps/ps4/q4. The
file mix.dat contains a matrix with 5 columns, with each column corresponding to one of
the mixed signals xi. The file bellsej.m contains starter code for your implementation.

Implement and run ICA, and report what was the W matrix you found. Please make your
code clean and very concise, and use symbol conventions as in class. To make sure your
code is correct, you should listen to the resulting unmixed sources. (Some overlap in the
sources may be present, but the different sources should be pretty clearly separated.)

Note: In our implementation, we annealed the learning rate α (slowly decreased it over
time) to speed up learning. We briefly describe in bellsej.m what we did, but you
should feel free to play with things to make it work best for you. In addition to using the
variable learning rate to speed up convergence, one thing that we also tried was choosing a
random permutation of the training data, and running stochastic gradient ascent visiting
the training data in that order (each of the specified learning rates was then used for one
full pass through the data); this is something that you could try, too.

Answer:

%--

% ICA

2To see why, observe that

fu(x) = u ·
(

arg min
α
||x− αu||2

)
= u ·

(
arg min

α
(xT x− 2αxTu+ α2uTu)

)
= u ·

(
2xTu

2uTu

)
= uxTu

where the third equality follows from the fact that the minimum of a convex quadratic function ax2 + bx + c is
given by x = − b

2a
, and the last equality follows from the fact that u is a unit-length vector.

CS229 Problem Set #4 Solutions 8

load mix.dat % load mixed sources

Fs = 11025; %sampling frequency being used

% listen to the mixed sources

normalizedMix = 0.99 * mix ./ (ones(size(mix,1),1)*max(abs(mix)));

% handle writing in both matlab and octave

v = version;

if (v(1) <= ’3’) % assume this is octave

wavwrite(’mix1.wav’, normalizedMix(:, 1), Fs, 16);

wavwrite(’mix2.wav’, normalizedMix(:, 2), Fs, 16);

wavwrite(’mix3.wav’, normalizedMix(:, 3), Fs, 16);

wavwrite(’mix4.wav’, normalizedMix(:, 4), Fs, 16);

wavwrite(’mix5.wav’, normalizedMix(:, 5), Fs, 16);

else

wavwrite(normalizedMix(:, 1), Fs, 16, ’mix1.wav’);

wavwrite(normalizedMix(:, 2), Fs, 16, ’mix2.wav’);

wavwrite(normalizedMix(:, 3), Fs, 16, ’mix3.wav’);

wavwrite(normalizedMix(:, 4), Fs, 16, ’mix4.wav’);

wavwrite(normalizedMix(:, 5), Fs, 16, ’mix5.wav’);

end

W=eye(5); % initialize unmixing matrix

% this is the annealing schedule I used for the learning rate.

% (We used stochastic gradient descent, where each value in the

% array was used as the learning rate for one pass through the data.)

% Note: If this doesn’t work for you, feel free to fiddle with learning

% rates, etc. to make it work.

anneal = [0.1 0.1 0.1 0.05 0.05 0.05 0.02 0.02 0.01 0.01 ...

0.005 0.005 0.002 0.002 0.001 0.001];

for iter=1:length(anneal)

%%%% here comes your code part

m = size(mix, 1);

order = randperm(m);

for i = 1:m

x = mix(order(i), :)’;

g = 1 ./ (1 + exp(-W * x));

W = W + anneal(iter) * ((1 - 2 * g) * x’ + inv(W’));

end

end;

%%%% After finding W, use it to unmix the sources. Place the unmixed sources

%%%% in the matrix S (one source per column). (Your code.)

CS229 Problem Set #4 Solutions 9

S = mix * W’;

S=0.99 * S./(ones(size(mix,1),1)*max(abs(S))); % rescale each column to have maximum absolute value 1

% now have a listen --- You should have the following five samples:

% * Godfather

% * Southpark

% * Beethoven 5th

% * Austin Powers

% * Matrix (the movie, not the linear algebra construct :-)

v = version;

if (v(1) <= ’3’) % assume this is octave

wavwrite(’unmix1.wav’, S(:, 1), Fs, 16);

wavwrite(’unmix2.wav’, S(:, 2), Fs, 16);

wavwrite(’unmix3.wav’, S(:, 3), Fs, 16);

wavwrite(’unmix4.wav’, S(:, 4), Fs, 16);

wavwrite(’unmix5.wav’, S(:, 5), Fs, 16);

else

wavwrite(S(:, 1), Fs, 16, ’unmix1.wav’);

wavwrite(S(:, 2), Fs, 16, ’unmix2.wav’);

wavwrite(S(:, 3), Fs, 16, ’unmix3.wav’);

wavwrite(S(:, 4), Fs, 16, ’unmix4.wav’);

wavwrite(S(:, 5), Fs, 16, ’unmix5.wav’);

end

5. [16 points] Markov decision processes

Consider an MDP with finite state and action spaces, and discount factor γ < 1. Let B be
the Bellman update operator with V a vector of values for each state. I.e., if V ′ = B(V),
then

V ′(s) = R(s) + γmax
a∈A

∑
s′∈S

Psa(s′)V (s′).

(a) [12 points] Prove that, for any two finite-valued vectors V1, V2, it holds true that

||B(V1)−B(V2)||∞ ≤ γ||V1 − V2||∞.

where
||V ||∞ = max

s∈S
|V (s)|.

(This shows that the Bellman update operator is a “γ-contraction in the max-norm.”)

Answer: First we observe that |maxa f(a) −maxa g(a)| ≤ maxa |f(a) − g(a)|. To
see why, define af = arg maxa f(a) and ag = arg maxa g(a), respectively. Then,

f(af)− g(ag) ≤ f(af)− g(af) ≤ |f(af)− g(af)| ≤ max
a
|f(a)− g(a)|

g(ag)− f(af) ≤ g(ag)− f(ag) ≤ |g(ag)− f(ag)| ≤ max
a
|g(a)− f(a)|,

where the first inequality in each line follows from the fact that ag and af are the max-
imizers of g and f , respectively. Combining the results from the two lines, it follows

CS229 Problem Set #4 Solutions 10

that |f(af) − g(ag)| ≤ maxa |f(a) − g(a)|, which is the equivalent to |maxa f(a) −
maxa g(a)| ≤ maxa |f(a)− g(a)|.

Then, we have

‖B(V1)−B(V2)‖∞ = max
s∈S

∣∣∣∣∣γmax
a∈A

∑
s′∈S

Psa(s′)V1(s′)− γmax
a∈A

∑
s′′∈S

Psa(s′′)V2(s′′)

∣∣∣∣∣
≤ γmax

s∈S
max
a∈A

∣∣∣∣∣∑
s′∈S

Psa(s′)(V1(s′)− V2(s′))

∣∣∣∣∣
≤ γmax

s∈S
max
a∈A

∑
s′∈S
|Psa(s′)(V1(s′)− V2(s′))|

= γmax
s∈S

max
a∈A

∑
s′∈S

Psa(s′) |(V1(s′)− V2(s′))|

≤ γmax
s∈S

max
a∈A

max
s′∈S
|(V1(s′)− V2(s′))|

= γmax
s′∈S
|V1(s′)− V2(s′)|

= γ‖V1 − V2‖∞.

The first equality uses the definition of the Bellman operator (after noticing that R(s)
cancels). The second inequality comes from the fact that |maxa f(a) − maxa g(a)| ≤
maxa |f(a)−g(a)| (and some simplification). The third inequality comes from the triangle
inequality. The fourth equality comes from the fact that probabilities are nonnegative. The
fifth equality follows from the fact that an expectation of a random variable is necessarily
less than its maximum value. The sixth equality involves removing maximizations which
play no role, and the final equality uses the definition of the max-norm.

(b) [4 points] We say that V is a fixed point of B if B(V) = V . Using the fact that
the Bellman update operator is a γ-contraction in the max-norm, prove that B has at
most one fixed point—i.e., that there is at most one solution to the Bellman equations.
You may assume that B has at least one fixed point.

Answer: Suppose that V1 and V2 are 2 fixed points of B. We proved that ‖B(V1)−
B(V2)‖∞ ≤ γ‖V1 − V2‖∞, but B(V1) = V1 and B(V2) = V2 so

‖V1 − V2‖∞ ≤ γ‖V1 − V2‖∞ =⇒ (1− γ)‖V1 − V2‖∞ ≤ 0.

Since 0 ≤ γ < 1, then the coefficient 1 − γ is positive. Dividing through by 1 − γ, and
observing that the max-norm is always nonnegative, it follows that ‖V1 − V2‖∞ = 0, i.e.
V1 = V2.

6. [25 points] Reinforcement Learning: The inverted pendulum

In this problem, you will apply reinforcement learning to automatically design a policy for
a difficult control task, without ever using any explicit knowledge of the dynamics of the
underlying system.

The problem we will consider is the inverted pendulum or the pole-balancing problem.3

Consider the figure shown. A thin pole is connected via a free hinge to a cart, which can
move laterally on a smooth table surface. The controller is said to have failed if either the

3The dynamics are adapted from http://www-anw.cs.umass.edu/rlr/domains.html

CS229 Problem Set #4 Solutions 11

−3 −2 −1 0 1 2 3
−0.5

0

0.5

1

1.5

2

2.5

3

3.5

angle of the pole deviates by more than a certain amount from the vertical position (i.e.,
if the pole falls over), or if the cart’s position goes out of bounds (i.e., if it falls off the
end of the table). Our objective is to develop a controller to balance the pole with these
constraints, by appropriately having the cart accelerate left and right.

We have written a simple Matlab simulator for this problem. The simulation proceeds
in discrete time cycles (steps). The state of the cart and pole at any time is completely
characterized by 4 parameters: the cart position x, the cart velocity ẋ, the angle of the
pole θ measured as its deviation from the vertical position, and the angular velocity of the
pole θ̇. Since it’d be simpler to consider reinforcement learning in a discrete state space, we
have approximated the state space by a discretization that maps a state vector (x, ẋ, θ, θ̇)
into a number from 1 to NUM STATES. Your learning algorithm will need to deal only with
this discretized representation of the states.

At every time step, the controller must choose one of two actions - push (accelerate) the cart
right, or push the cart left. (To keep the problem simple, there is no do-nothing action.)
These are represented as actions 1 and 2 respectively in the code. When the action choice
is made, the simulator updates the state parameters according to the underlying dynamics,
and provides a new discretized state.

We will assume that the reward R(s) is a function of the current state only. When the
pole angle goes beyond a certain limit or when the cart goes too far out, a negative reward
is given, and the system is reinitialized randomly. At all other times, the reward is zero.
Your program must learn to balance the pole using only the state transitions and rewards
observed.

The files for this problem are in /afs/ir/class/cs229/ps/ps4/q6. Most of the the code
has already been written for you, and you need to make changes only to control.m in the
places specified. This file can be run in Matlab to show a display and to plot a learning
curve at the end. Read the comments at the top of the file for more details on the working
of the simulation.4

(a) To solve the inverted pendulum problem, you will estimate a model (i.e., transition
probabilities and rewards) for the underlying MDP, solve Bellman’s equations for this
estimated MDP to obtain a value function, and act greedily with respect to this value
function.

4Note that the routine for drawing the cart does not work in Octave.

CS229 Problem Set #4 Solutions 12

Briefly, you will maintain a current model of the MDP and a current estimate of the
value function. Initially, each state has estimated reward zero, and the estimated
transition probabilities are uniform (equally likely to end up in any other state).

During the simulation, you must choose actions at each time step according to some
current policy. As the program goes along taking actions, it will gather observations on
transitions and rewards, which it can use to get a better estimate of the MDP model.
Since it is inefficient to update the whole estimated MDP after every observation, we
will store the state transitions and reward observations each time, and update the
model and value function/policy only periodically. Thus, you must maintain counts
of the total number of times the transition from state si to state sj using action a
has been observed (similarly for the rewards). Note that the rewards at any state
are deterministic, but the state transitions are not because of the discretization of
the state space (several different but close configurations may map onto the same
discretized state).

Each time a failure occurs (such as if the pole falls over), you should re-estimate the
transition probabilities and rewards as the average of the observed values (if any).
Your program must then use value iteration to solve Bellman’s equations on the
estimated MDP, to get the value function and new optimal policy for the new model.
For value iteration, use a convergence criterion that checks if the maximum absolute
change in the value function on an iteration exceeds some specified tolerance.

Finally, assume that the whole learning procedure has converged once several consecu-
tive attempts (defined by the parameter NO LEARNING THRESHOLD) to solve Bellman’s
equation all converge in the first iteration. Intuitively, this indicates that the esti-
mated model has stopped changing significantly.

The code outline for this problem is already in control.m, and you need to write
code fragments only at the places specified in the file. There are several details
(convergence criteria etc.) that are also explained inside the code. Use a discount
factor of γ = 0.995.

Implement the reinforcement learning algorithm as specified, and run it. How many
trials (how many times did the pole fall over or the cart fall off) did it take before the
algorithm converged?

Answer: The number of trials needed varies a good deal, but in the example run
shown in the reference solution answer to part (b), 160 trials were needed.

%%%%%%% CS 229 Machine Learning %%%%%%%%%%%

%%%%%%% Programming Assignment 4 %%%%%%%%%%

%%%

%%% Parts of the code (cart and pole dynamics, and the state

%%% discretization) are adapted from code available at the RL repository

%%% http://www-anw.cs.umass.edu/rlr/domains.html

%%%

%%%

% This file controls the pole-balancing simulation. You need to write

% code in places marked "CODE HERE" only.

CS229 Problem Set #4 Solutions 13

% Briefly, the main simulation loop in this file calls cart_pole.m for

% simulating the pole dynamics, get_state.m for discretizing the

% otherwise continuous state space in discrete states, and show_cart.m

% for display.

% Some useful parameters are listed below.

% NUM_STATES: Number of states in the discretized state space

% You must assume that states are numbered 1 through NUM_STATES. The

% state numbered NUM_STATES (the last one) is a special state that marks

% the state when the pole has been judged to have fallen (or when the

% cart is out of bounds). However, you should NOT treat this state any

% differently in your code. Any distinctions you need to make between

% states should come automatically from your learning algorithm.

% After each simulation cycle, you are supposed to update the transition

% counts and rewards observed. However, you should not change either

% your value function or the transition probability matrix at each

% cycle.

% Whenever the pole falls, a section of your code below will be

% executed. At this point, you must use the transition counts and reward

% observations that you have gathered to generate a new model for the MDP

% (i.e., transition probabilities and state rewards). After that, you

% must use value iteration to get the optimal value function for this MDP

% model.

% TOLERANCE: Controls the convergence criteria for each value iteration

% run

% In the value iteration, you can assume convergence when the maximum

% absolute change in the value function at any state in an iteration

% becomes lower than TOLERANCE.

% You need to write code that chooses the best action according

% to your current value function, and the current model of the MDP. The

% action must be either 1 or 2 (corresponding to possible directions of

% pushing the cart).

% Finally, we assume that the simulation has converged when

% ’NO_LEARNING_THRESHOLD’ consecutive value function computations all

% converged within one value function iteration. Intuitively, it seems

% like there will be little learning after this, so we end the simulation

% here, and say the overall algorithm has converged.

% Learning curves can be generated by calling plot_learning_curve.m (it

% assumes that the learning was just executed, and the array

% time_steps_to_failure that records the time for which the pole was

% balanced before each failure are in memory). num_failures is a variable

CS229 Problem Set #4 Solutions 14

% that stores the number of failures (pole drops / cart out of bounds)

% till now.

% Other parameters in the code are described below:

% GAMMA: Discount factor to be used

% The following parameters control the simulation display; you dont

% really need to know about them:

% pause_time: Controls the pause between successive frames of the

% display. Higher values make your simulation slower.

% min_trial_length_to_start_display: Allows you to start the display only

% after the pole has been successfully balanced for at least this many

% trials. Setting this to zero starts the display immediately. Choosing a

% reasonably high value (around 100) can allow you to rush through the

% initial learning quickly, and start the display only after the

% performance is reasonable.

%%%%%%%%%% Simulation parameters %%%%%%%%%%

pause_time = 0.001;

min_trial_length_to_start_display = 0;

display_started = min_trial_length_to_start_display == 0;

NUM_STATES = 163;

GAMMA=0.995;

TOLERANCE=0.01;

NO_LEARNING_THRESHOLD = 20;

%%%%%%%%%% End parameter list %%%%%%%%%%

% Time cycle of the simulation

time=0;

% These variables perform bookkeeping (how many cycles was the pole

% balanced for before it fell). Useful for plotting learning curves.

time_steps_to_failure=[];

num_failures=0;

time_at_start_of_current_trial=0;

max_failures=500; % You should reach convergence well before this.

% Starting state is (0 0 0 0)

% x, x_dot, theta, theta_dot represents the actual continuous state vector

x = 0.0; x_dot = 0.0; theta = 0.0; theta_dot = 0.0;

CS229 Problem Set #4 Solutions 15

% state is the number given to this state - you only need to consider

% this representation of the state

state = get_state(x, x_dot, theta, theta_dot);

if display_started==1

show_cart(x, x_dot, theta, theta_dot, pause_time);

end

%%% CODE HERE: Perform all your initializations here %%%

% Assume no transitions or rewards have been observed

% Initialize the value function array to small random values (0 to 0.10,

% say)

% Initialize the transition probabilities uniformly (ie, probability of

% transitioning for state x to state y using action a is exactly

% 1/NUM_STATES). Initialize all state rewards to zero.

transition_counts = zeros(NUM_STATES, NUM_STATES, 2);

transition_probs = ones(NUM_STATES, NUM_STATES, 2) / NUM_STATES;

reward_counts = zeros(NUM_STATES, 2);

reward = zeros(NUM_STATES, 1);

value = rand(NUM_STATES, 1) * 0.1;

%%%% END YOUR CODE %%%%%%%%%%%%%%%%%%%%%%%%%%%%

%%% CODE HERE (while loop condition) %%%

% This is the criterion to end the simulation

% You should change it to terminate when the previous

% ’NO_LEARNING_THRESHOLD’ consecutive value function computations all

% converged within one value function iteration. Intuitively, it seems

% like there will be little learning after this, so end the simulation

% here, and say the overall algorithm has converged.

consecutive_no_learning_trials = 0;

while (consecutive_no_learning_trials < NO_LEARNING_THRESHOLD)

%%% CODE HERE: Write code to choose action (1 or 2) %%%

% This action choice algorithm is just for illustration. It may

% convince you that reinforcement learning is nice for control

% problems! Replace it with your code to choose an action that is

% optimal according to the current value function, and the current MDP

% model.

CS229 Problem Set #4 Solutions 16

score1 = transition_probs(state, :, 1) * value;

score2 = transition_probs(state, :, 2) * value;

if (score1 > score2)

action = 1;

elseif (score2 > score1)

action = 2;

else

if (rand < 0.5)

action = 1;

else

action = 2;

end

end

%%% END YOUR CODE %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

% Get the next state by simulating the dynamics

[x, x_dot, theta, theta_dot] = cart_pole(action, x, x_dot, theta, theta_dot);

% Increment simulation time

time = time + 1;

% Get the state number corresponding to new state vector

new_state = get_state(x, x_dot, theta, theta_dot);

if display_started==1

show_cart(x, x_dot, theta, theta_dot, pause_time);

end

% Reward function to use - do not change this!

if (new_state==NUM_STATES)

R=-1;

else

%R=-abs(theta)/2.0;

R=0;

end

%%% CODE HERE: Perform updates %%%%%%%%%

% A transition from ’state’ to ’new_state’ has just been made using

% ’action’. The reward observed in ’new_state’ (note) is ’R’.

% Write code to update your statistics about the MDP - i.e., the

% information you are storing on the transitions and on the rewards

% observed. Do not change the actual MDP parameters, except when the

% pole falls (the next if block)!

transition_counts(state, new_state, action) = ...

CS229 Problem Set #4 Solutions 17

transition_counts(state, new_state, action) + 1;

reward_counts(new_state, 1) = reward_counts(new_state, 1) + R;

reward_counts(new_state, 2) = reward_counts(new_state, 2) + 1;

% Recompute MDP model whenever pole falls

% Compute the value function V for the new model

if (new_state==NUM_STATES)

% Update MDP model using the current accumulated statistics about the

% MDP - transitions and rewards.

% Make sure you account for the case when total_count is 0, i.e., a

% state-action pair has never been tried before, or the state has

% never been visited before. In that case, you must not change that

% component (and thus keep it at the initialized uniform distribution).

for a = 1:2

for s = 1:NUM_STATES

den = sum(transition_counts(s, :, a));

if (den > 0)

transition_probs(s, :, a) = transition_counts(s, :, a) / den;

end

end

end

for s = 1:NUM_STATES

if (reward_counts(s, 2) > 0)

reward(s) = reward_counts(s, 1) / reward_counts(s, 2);

end

end

% Perform value iteration using the new estimated model for the MDP

% The convergence criterion should be based on TOLERANCE as described

% at the top of the file.

% If it converges within one iteration, you may want to update your

% variable that checks when the whole simulation must end

iterations = 0;

new_value = zeros(NUM_STATES, 1);

while true

iterations = iterations + 1;

for s = 1:NUM_STATES

value1 = transition_probs(s, :, 1) * value;

value2 = transition_probs(s, :, 2) * value;

new_value(s) = max(value1, value2);

end

new_value = reward + GAMMA * new_value;

diff = max(abs(value - new_value));

value = new_value;

if (diff < TOLERANCE)

CS229 Problem Set #4 Solutions 18

break;

end

end

if (iterations == 1)

consecutive_no_learning_trials = consecutive_no_learning_trials + 1;

else

consecutive_no_learning_trials = 0;

end

% pause(0.2); % You can use this to stop for a while!

end

%%% END YOUR CODE %%%%%%%%%%%%%%%%%%%

% Dont change this code: Controls the simulation, and handles the case

% when the pole fell and the state must be reinitialized

if (new_state == NUM_STATES)

num_failures = num_failures+1

time_steps_to_failure(num_failures) = time - time_at_start_of_current_trial;

time_at_start_of_current_trial = time;

time_steps_to_failure(num_failures)

if (time_steps_to_failure(num_failures) > ...

min_trial_length_to_start_display)

display_started=1;

end

% Reinitialize state

x = -1.1 + rand(1)*2.2

%x=0.0;

x_dot = 0.0; theta = 0.0; theta_dot = 0.0;

state = get_state(x, x_dot, theta, theta_dot);

else

state=new_state;

end

end

% Plot the learning curve (time balanced vs trial)

plot_learning_curve

(b) Plot a learning curve showing the number of time-steps for which the pole was
balanced on each trial. You just need to execute plot learning curve.m after
control.m to get this plot.

CS229 Problem Set #4 Solutions 19

Answer:

0 20 40 60 80 100 120 140 160 180
3

3.5

4

4.5

5

5.5

6

6.5

