(CS229: Additional Notes on Backpropagation

1 Forward propagation

Recall that given input z, we define al”) = . Then for layer £ =1,2,..., N,
where N is the number of layers of the network, we have

1. 21 — gl | pl
2. alfl = gli(19)

In these notes we assume the nonlinearities gl are the same for all layers be-
sides layer V. This is because in the output layer we may be doing regression
[hence we might use g(x) = z| or binary classification [g(z) = sigmoid(z)] or
multiclass classification [g(z) = softmax(z)]. Hence we distinguish ¢!Vl from
g, and assume ¢ is used for all layers besides layer N.

Finally, given the output of the network al!, which we will more simply
denote as §, we measure the loss J(W,b) = L(a!™, y) = L(i),y). For example,

for real-valued regression we might use the squared loss
N L .
L@G.y) =50 —y)°

and for binary classification using logistic regression we use

L(§,y) = —(ylogg + (1 — y)log(1 — 7))
or negative log-likelihood. Finally, for softmax regression over k classes, we
use the cross entropy loss

k
L(j,y) ==Y Wy =j}logi;

=1

which is simply negative log-likelihood extended to the multiclass setting.
Note that g is a k-dimensional vector in this case. If we use y to instead
denote the k-dimensional vector of zeros with a single 1 at the [th position,
where the true label is [, we can also express the cross entropy loss as

k
L(Gy)=—> y;logi;
j=1

1



2 Backpropagation

Let’s define one more piece of notation that’ll be useful for backpropagation.*
We will define
01 = V.0 L(,y)

We can then define a three-step “recipe” for computing the gradients with
respect to every W bl as follows:

1. For output layer N, we have
oM = V. L(5.y)

Sometimes we may want to compute V v L(9,%) directly (e.g. if glV]
is the softmax function), whereas other times (e.g. when ¢! is the
sigmoid function o) we can apply the chain rule:

VZ[N]‘C(Q7 y) = Vgﬁ(g, y) © (g[N])/(Z[N]>
Note (g™ (2 denotes the elementwise derivative w.r.t. 2N,
2. For{=N—-1,N —2,...,1, we have

5[6] _ (W[E—&-I}T(;[K—&—l]]) og/(z[é])

3. Finally, we can compute the gradients for layer ¢ as

Vi J(W, b) = §¥al=1UT
VyaJ (W, b) = 61

where we use o to indicate the elementwise product. Note the above proce-
dure is for a single training example.

You can try applying the above algorithm to logistic regression (N = 1,
gl is the sigmoid function o) to sanity check steps (1) and (3). Recall that
0'(z) = 0(2) o (1 — 0(2)) and o(z!) is simply al!l. Note that for logistic
regression, if x is a column vector in R™' then WM € R™” and hence
Vi J(W,b) € R, Example code for two layers is also given at:

http://cs229.stanford.edu/notes/backprop.py

IThese notes are closely adapted from:
http://ufldl.stanford.edu/tutorial/supervised/MultilayerNeuralNetworks/
Scribe: Ziang Xie



