

Towards Embedded Emotion Recognition (A Battery-Powered Friend) Paul Shved

Problem

What does it take to build an embedded device that "smiles back" at you?

Challenges:

- Embedded devices have limited hardware
- Neural networks require lots of computation

There's hope:

- Reading sensor data (cameras) requires little power [1]
- Training can be done offline
- TensorFlow Lite proven to run on Arduino [1] \bullet

Assumption:

• An embedded device Apollo3 can perform 0.46 mln FLOPS [benchmarks]

Overall Approach

- Define speed targets (0,46m FLOPS on Apollo 3) Start with vanilla AlexNet 2.
- Define quality targets (-20% of AlexNet) 3.
- **Meta-learning**: reduce the net to meet the quality targets (AUC) 4. a. Use validation set to evaluate quality

Final Architecture

Algorithm 1: An A*-like
Data: A baseline mode
evaluates the AU
Result: Final model m
Function Recurse (n
Data: Model m, Al
Result: Model m' of
if $T(m) < \beta$
return nil
elif $Size(m_{best}) < s$
return m
for $m' \in Reduction$
$m_{best} \leftarrow \text{Recu}$
If $m_{best} \neq \text{nil}$
return nil
$\beta_0 \leftarrow 80\% \cdot T(m_0);$
return Recurse (m_0 ,

References

[1] Pete Warden. Scaling machine learning models to embedded devices, 2019. https://petewarden.com/2019/03/27/scaling-machine-learning-models-to-embedded-devices/

[2]: W. Ding, M. Xu, D. Huang, W. Lin, M. Dong, X. Yu, and H. Li. Audio and face video emotion recognition in the wild using deep neural networks and small datasets. In proceedings of the 18th ACM International Conference on Multimodal Interaction. 2016

Data

Google Facial Expression Comparison Dataset

We used 8,000 (out of 156,000) images.

Preparation:

- 1. Labeling via MTurk. Only 1 label, which resulted in 9% error.
- Center-Cropping 2.
- Resizing to 224x224. 3.
- Augmentation (5 ways): Blur, noise, shift, rotations, color, lighting.

[cs231n, Spring 2019]

Approach

- Using AlexNet for Emotion Recognition done in [2].

We ran the meta-learning algorithm manually; automating it is left for future work.

3 Convolution layers (the 1st layer large stride), 3 MaxPool Layers, 1 Batch Norm layer, 1 fully connected layer. Dropout on the FCN.

Meta-learning \mathbf{O}

Results

- Found an intermediate model **16 times faster** with -20% AUC loss
- Final model did not perform to expectations.
- Did not actually build a robot 😕

				Accur				
Model	Set	AUC	Δ AUC	•	Prec	Recall	FLOPS	Est runtime
Baseline AlexNet	test	0.7	0	0.72	0.53	0.52	82.7 mln	3min 1s
Reduced AlexNet	val	0.67	-15%	0.68	0.45	0.41	5.1 mln	
Reduced AlexNet	test	0.66	-20%	0.69	0.47	0.44	5.1 mln	11s
Embedded 3-layer	val	0.69	-5%	0.7	0.48	0.49	1.3 mln	
Embedded 3-layer	test	0.62	-40%	0.64	0.39	0.39	1.3 mln	2.9s

Saliency maps are consistent with psychology studies [Duchenne, 1862]. The model attends most to the cheeks and eyes; rarely to the mouth.

