
Towards Embedded Emotion Recognition
(A Battery-Powered Friend)

 Paul Shved [cs231n, Spring 2019]

Overall Approach
1. Define speed targets (0,46m FLOPS on Apollo 3)
2. Start with vanilla AlexNet
3. Define quality targets (-20% of AlexNet)
4. Meta-learning: reduce the net to meet the quality targets (AUC)

a. Use validation set to evaluate quality

Using AlexNet for Emotion Recognition done in [2].

Problem

References
[1] Pete Warden. Scaling machine learning models to embedded devices, 2019.
https://petewarden.com/2019/03/27/scaling-machine-learning-models-to-embedded-devices/

[2]: W. Ding, M. Xu, D. Huang, W. Lin, M. Dong, X. Yu, and H. Li. Audio and face video
emotion recognition in the wild using deep neural networks and small datasets. In
proceedings of the 18th ACM International Conference on Multimodal Interaction. 2016

Results
1. Found an intermediate model 16 times faster with -20% AUC loss
2. Final model did not perform to expectations.
3. Did not actually build a robot ☹

Analysis

Approach

Data

What does it take to build an embedded device that
“smiles back” at you?

Google Facial Expression Comparison Dataset
We used 8,000 (out of 156,000) images.

Final Architecture
3 Convolution layers (the 1st layer large stride), 3 MaxPool Layers, 1 Batch
Norm layer, 1 fully connected layer. Dropout on the FCN.

We ran the meta-learning
algorithm manually; automating it
is left for future work.

Saliency maps are consistent with psychology studies [Duchenne, 1862].
The model attends most to the cheeks and eyes; rarely to the mouth.

Model Set AUC Δ AUC
Accur
. Prec Recall FLOPS Est runtime

Baseline AlexNet test 0.7 0 0.72 0.53 0.52 82.7 mln 3min 1s

Reduced AlexNet val 0.67 -15% 0.68 0.45 0.41 5.1 mln

Reduced AlexNet test 0.66 -20% 0.69 0.47 0.44 5.1 mln 11s

Embedded 3-layer val 0.69 -5% 0.7 0.48 0.49 1.3 mln

Embedded 3-layer test 0.62 -40% 0.64 0.39 0.39 1.3 mln 2.9s

Challenges:
● Embedded devices have limited hardware
● Neural networks require lots of computation

There’s hope:
● Reading sensor data (cameras) requires little

power [1]
● Training can be done offline
● TensorFlow Lite proven to run on Arduino [1]

Assumption:
● An embedded device Apollo3 can perform

0.46 mln FLOPS [benchmarks]

Meta-learningPreparation:
1. Labeling via MTurk. Only 1 label, which resulted

in 9% error.
2. Center-Cropping
3. Resizing to 224x224.
4. Augmentation (5 ways): Blur, noise, shift,

rotations, color, lighting.

MaxPool + Dropout

4

Use A* search on model space (not hyperparameters!) with objective to
minimize FLOPS while maintaining quality 𝛽0

https://petewarden.com/2019/03/27/scaling-machine-learning-models-to-embedded-devices/

