A Battery-Powered Friend:

Towards Embedded Emotion Recognition
(CS231N Project Report)

Paul Shved*
Stanford CS 231n (Spring 2019)

pshved@stanford.edu

Abstract

In this project, we set out to build a smiling robot: an em-
bedded, battery-powered device that ”smiles back” when a
human subject in front of it smiles. We define a problem
of building a neural system that would power the smiling
robot. We prepare the dataset, apply augmentations, and
use MTurk to label data for this project specifically . We
set out to find the neural architecture that, once deployed,
consumes the least power, but achieves the desired quality
defined as 80% of the Area Under ROC Curve compared to
state-of-the-art models. We use the number of operations
during the evaluation pass as an estimate of the power con-
sumption. The AUC performance targets are set by a CNN
similar to a 6-layer AlexNet that achieves state-of-the-art
performance on our dataset. Based on the validation set
performance, we have found a 4-layer convolutional net-
work that achieves the desired outcome, and theoretically
runs on SparkFun Appollo 3 in 3 seconds; based on the test
set evaluation, only architectures that required 6 seconds
perform well. Due to time constraints, we leave the deploy-
ment of the resultant CNN onto an actual embedded device
to future work. We additionally find, by inspecting saliency
maps, that our model tends to identify the smile by locating
muscle contraction in the cheeks rather than by the shape
of the lips.

1. Introduction

Humans communicate with one another and the world
around them via multiple means. In addition to speech and
gestures, emotions displayed through facial expressions is
one of the most powerful ways humans (and other animals)
use to communicate with each other. [[6]. While some emo-
tions are learned, many emotions, such as joy or anger, are
innate. The facial expressions humans use to display these

*The author thanks Anna Smagina for the advice on dataset collection
methods for visual recognition and for suggesting to use augmentations.

emotions also tend to be innate [[17]. Thus the use of emo-
tions in human-machine interactions will require no special
training as most humans already know how to display basic
emotions such as joy.

Recognizing emotions displayed through facial expres-
sion requires the device with which the human operator in-
teracts to run visual recognition software. The challenge
with this is twofold. On one hand, human response to emo-
tions tends to be immediate: failure to recognize frustration
quickly might lead to more frustration. The other challenge
is that robots and embedded devices have limited hardware
and limited computational power. While performing infer-
ence on device has tight resource constraints, training and
data augmentation and preparation will be performed using
a more powerful system.

1.1. Problem Statement

In this project, we make progress towards developing
and deploying a neural system that performs the following
task. Given a still image in visible light, the system provides
a ”’yes or no” answer to the following query:

”Is there a smiling person in this picture?” (1)

We aim to build a model that can be deployed onto an
embedded system. If the answer to this question is "yes”,
the system will light up a pattern of lights simulating a hu-
man smile.

Due to time constraints (mostly, in order to put empha-
sis on Visual Recognition tasks rather than on working with
and optimizing embedded hardware) we will be implement-
ing emotion recognition from single-frame images.

1.2. Embedded System Constraints

Deployment onto embedded system imposes an upper
bound on computational requirement of a model. We aim
to achieve a response from the system within 3 seconds
when running on a SparkFun Apollo3 development board.

The board chip’s clock speed is 48 Mhz, so one might as-
sume that the chip is capable of doing 48 million of integer
additions per second. However, there are two considera-
tions:

e CNN-based models use floating-point rather than inte-
ger operations (without special tuning);

e other operations used in CNN-based models include
multiplication and division (e.g. in normalization lay-
ers), which are more expensive;

e loading and storing data in memory requires multiple
clock cycles.

Thus in this work we use a floating-point load-add-store
as an approximation of a computational cost of one aver-
age operation, which takes 6.5 microseconds on Arduino
Uno M3 [2]]. That board is three times as slow as our tar-
get device. Extrapolating, our upper bound on the number
of floating point operations is 0.46 million operations per
second; 3 seconds yield 1.38 million operations per infer-
ence as the upper bound we use in this project.

2. Related Work

Large body of prior work on emotion recognition exists.
The literature references non-neural systems features [14],
purely neural systems [19]], and combinations of those [11].

2.1. Non-neural systems

Non-neural systems for emotion recognition such as [[14]
rely on Haar-like features and Viola-Jones object detector
[24]. This object detection uses simple convolution that
detects horizontal and vertical edges, as well as brightness
change in a certain direction (e.g. the bottom of the cheeks
on the human face will likely be darker than the top).

The kernels in these convolutions are not trained on the
data. The training happens on the features produced by
them, e.g. by using AdaBoost algorithm [9]. A drawback of
that this approach would be that the resultant system would
not be robust to changes in face orientation and lighting con-
ditions.

An advantage of such systems would be that they require
little computational power. E.g. one of the modern such
systems [[14] was training as well as running inference on
hardware equivalent to a modern cell phone.

2.2. Neural systems

State of the art facial emotion recognition using deep
learning have been the state of the art in the recent years
due to their better accuracy [15].

An advantage of CNN-based architecture to non-neural
systems surveyed in section [2.1] is its robustness to scale,
pose changes, and position changes, which was established

in [8]. CNNs tens to even learn the Facial Action Unit fea-
tures by themselves [12].

Consider a network architecture for emotion recognition
in [7]. The architecture first uses deep CNN to extract fea-
tures from each still image in a video stream; the architec-
ture is based on a pre-trained deep network with 5 CNN lay-
ers, two max-pooling layers (AlexNet [13]]), and two fully-
connected layers which were re-trained on emotion recog-
nition tasks. This produces the single-image features. The
video features are produced using eigenvectors, covariance
matrices, and multidimensional mean, and variance of each
feature. PArtial Least Square regression [21] is applied in-
stead of more traditional SVM or Logistic regressions. The
model achieves state-of-the-art performance on FER2013
dataset. The advantages of this approach is that it does
not rely on handcrafted feature or complex preprocessing.
Other papers such as [19] use a similar approach.

Many emotion recognition systems employ preprocess-
ing before using CNNs to extract features. Almost all
use Viola-Jones face detection [24] to find the region that
contains a face in the larger frame. Other approaches to
face detection use Fast R-CNN [10]. In this approach, the
whole image is passed through a CNN architecture, which
proposes multiple regions. These regions are considered
as faces for further feature extraction using an emotion-
specific, different CNN.

Once the face region was identified, some papers such as
[L1] use “face alignment” [3] prior to CNN-based feature
extraction. In this approach, landmark features (location of
the eyes, nose, and mouth) are detected using non-neural
methods, and a spatial transformation is used to normalize
the position of the face so that it fills the entire frame.

Other state-of-the-art facial emotion recognition systems
employ more complex pipelines and ensembles of neural
networks [[15], but exploring facial recognition in this much
detail was out of scope of this project.

We note that state-of-the art emotion recognition systems
evaluated on large test sets achieve 71-75% accuracy for 6
classes evaluated on 3589 images and 85-89 on 834 test set
images. [15].

2.3. Deep learning and Embedded devices

Recent work by Pete Warden [20]] demonstrated that on-
line speech recognition can run on a coin battery powered
device with only 100kb of RAM. The speech recognition
algorithm in [20] used a multi-layer Convolutional Neural
Network, and the model size used was only 80Mb.

We found that Tensorflow machine learning framework
was ported to FPGA architecture [18]]. This motivated our
choice of framework in our implementation.

However, we were not able to find documented literature
on successful deployment of modern emotion recognition
methods on embedded hardware. Some pre-neural methods

used laptops [14] used laptops to achieve portability; oth-
ers use embedded hardware as a frontend to a cloud-based
emotion recognition service [3].

3. Dataset and Data Preparation

We used a dataset of 6000 training images and 1000 test
images of size 224x224 (center-cropped and downscaled).
The images were based on [23], and we obtained labels
from Mechanical Turk specifically for this project. 1000
of test set images was withheld for validation; no cross-
validation was used. We used augmentations and face de-
tection, but no face alignment.

3.1. Obtaining the dataset

Facial recognition datasets are difficult to obtain for in-
dependent research. Most datasets we surveyed require col-
laboration with a full-time employee of an academic in-
stitution. The dataset we were able to obtain quickly (we
used JACFFE [4]) contain very few examples of “happy”
facial expressions (50 and 6 respectively). Early evaluations
demonstrated this dataset is insufficient. Thus, we have per-
formed our own, project-specific labeling.

In our data preparation, we start with the Google facial
expression comparison dataset” [23]. The dataset contains
images of people and groups of people ’in the wild” (in nat-
ural, non-laboratory conditions) that visibly display emo-
tions. It contains 156,000 images, with about 10% withheld
for the test set. The images were also annotated with bound-
ing boxed for faces produced by a Viola-Jones detector .
Sadly, the images of the dataset were not labeled with actual
emotions.

We have performed a study on Mechanical Turk. The
raters were asked a question “’Is the person smiling in this
picture?”, with possible answers “Yes”, "No / Unsure”,
“Picture invalid (not a person, multiple people, etc)”. We’ve
labeled 8000 images from the training set, and 1000 images
from the test set. The study took about 1 hour to complete.

To save on study cost, we have asked only 1 rater to eval-
uate 1 picture. On manual evaluation of a random sample
of 64 pictures, we found that 9 of them were labeled in-
correctly, which estimates that the dataset contains 14%
mislabeled data. Asking 3 raters to rate every picture, and
taking a majority vote would decrease this rate to a more
acceptable 0.14% ~ 2%.

We have found that 31% of the dataset included people
who are smiling. See more how we tackled class imbalance
in section

3.2. Augmentation

A popular technique to boost the size of the dataset
in visual recognition tasks is data augmentation. In this
project we use the generic augmentation techniques: oc-

Figure 1. Left column: images from the training set with the aug-
mentation performed; right column: source images of the same
subject (for comparison).

clusion, small random affine transformations (rotation, flip-
ping), gaussian blur, noise, and embossing. Every aug-
mentation was applied with small probability of 20%. The
intended device camera may be used in low-light environ-
ments, so we applied weak motion blur (limit=5) with 85%
probability, and strong (limit=40) with 10%. Examples of
the augmentations can be found on Figure[I]

Note that we did not perform augmentations on either
test or validation sets.

3.3. Compensating for class imbalance

We found that 31% of training data was labeled with
positive labels (the person was smiling). Using Corss-
Entropy loss requires approximately equal number of ex-
amples. However, since the class imbalance was not signif-
icant, we simply repeated random 2 out of each 3 images
from the smiling” class to achieve the balance instead of
using a more sophisticated technique like Focal Loss [[16].

4. Methods

The challenge of this project is not just to build a network
that achieves strong performance on the metrics, but also the
one that performs inference in few enough arithmetic oper-
ations as was described in section[I.2] In section.T]we first
describe our meta-learning strategy and in 4.2] we describe
the architecture of the resultant CNN-based network.

4.1. Building an embeddable network

Our meta-learning algorithm is parametrized with a tar-
get reduction in the baseline model performance: by how
much can our reduced model perform worse on validation
set than the baseline model while still considering viable
for deployment. As viability for deployment we use a tar-
get maximum number of operations F. We chose the Area
Under ROC curve minus 0.5 as our target metric and call
target reduction /3.

ROC curve (“receiver operating characteristic’’) demon-
strates how a binary classifier performs compared to random
chance. Given a model and an evaluation set, the curve is a
2D plot of points:

(False Positive Rate, True Positive Rate) = 2)
> False Positive X True Positive 3)
¥ Actual Negative’ X Actual Positive

Examples can be found in the table 5] The area under
this curve is referred to ”AOC” and is considered the pri-
mary metric for comparison of different architectures in this
project.

As our meta-learning algorithm, we essentially perform
a depth-first search on the reductions of the architecture of
the baseline model until we find a model that performs well
enough on validation set.

Algorithm 1: An A*-like meta-learning algorithm

Data: A baseline model mg; function 7 that trains and
evaluates the AUC on validation set 7" : m — ¢t
Result: Final model m or nil if not found

Function Recurse (m, 3, s)is
Data: Model m, AUC target 3, FLOPS target s
Result: Model m/ or nil
ifT(m) < p
| returnnil
elif Size(Mmpest) < s
| return m
for m’ € Reductions(m)
Mpest < Recurse(m’,f);
if Mpest 7é nil
| return Mmpes:
return nil
BO — 80% . T(m());
return Recurse (my,)

4.2. Network architecture

At the core of the used methods is a Convolutional Neu-
ral Network. Setting image-specific tasks aside, a single
neural network unit for classification task usually consists
of two parts: feature extraction and classification. The lat-
ter is usually a fully-connected layer (or multiple) that pro-
duces output z = Wz + b where z is the feature vectors
produced by the feature extraction. The result of the final
fully-connected layer is fed to loss function during training,
or to a related classifier during testing. In this project we
used Cross-Entropy loss L and Softmax classifier defined
as (for a binary classifier):

Layer | Depth | stride | kernel | activation

Conv2D 96 4 11 relu
MaxPool 2 3
BatchNorm
Conv2D 256 1 5 relu
MaxPool 3
BatchNorm
Conv2D 384 1 3 relu
Conv2D 384 1 3 relu
Conv2D 256 1 3 relu
MaxPool 2 3
FC | 4096 softmax
FC 2 softmax

Table 1. Simplified AlexNet architecture that we used as a baseline
model mo. The final layer produces class scores for classes “Not
Smiling” and ”Smiling”.

L=—(ylogy + (1 —y)log(l-y)) @
/ et
V= o)
>y €%

Feature extraction can be performed using non-neural
features (edge detection, histogram of oriented gradients,
etc), or using neural feature extractor such as CNN that can
be trained on the input data. A 2D convolution is an opera-
tion to apply a kernel k(i j) of size a x b to the input image
a(t, 7) to produce the output image b(i, j)

a b
b(z,y)= Y D k(m,Da(x—m,y—m) (6

m=—al=—b

The values of b become features for the next layer of the
network. The “weights” k (i, j) are updated during training
to minimize the loss given by equation (@).

During inference, the value of ¢’ from () is compared
with threshold T to determine if the class.

4.2.1 Baseline architecture

Many facial emotion recognition systems surveyed [7]] [10]
use AlexNet [[13] and derived / fine-tuned architectures for
visual emotion recognition. We start with m as the simpli-
fied form of AlexNet presented in the cs231n Spring 2019
course lectures (See Table [d.2.T).

Note that since we need to reduce (rather than extend)
the architecture of the network, we did not consider using
pretrained embeddings.

Initially, we aimed to tune our learning rate in order
achieve state of the art emotion recognition performance
(accuracy of 70+%) on our dataset using the AlexNet de-
scribed in Table[d.2.1] We tuned learning rate and optimizer

2 4 6 8 10 12 14 16 18

Figure 2. Loss for training and validation sets on the baseline
AlexNet model. Y axis: cross-entropy loss value, X axis: epoch
number. Loss graphs for all other networks were similar.

parameters until we were able to achieve stable, converging
training depicted in Figure 2] Max Learning Rate is 0.05

with linear increase to this value until epoch 10 and cosine

. 1+4-cos(Ep]‘\}ﬂh .
decay given by v = yg————— after. We trained thus

for 20 epochs: training for more epoch started to decrease
the performance on the validation set universally. As opti-
mizer, we started with using Adam, however, the model was
not converging in most runs, so we tried Stochastic Gradient
Descent with Nesterov momentum (x = 0.8 worked best).

Nesterov Momentum update replaces SGD’s 2’ = z¢ —
vdx with multi-step update. We track both the current po-
sition x, but also “velocity” v, which are updated using the
following rules:

/

v = pv —vdx @)
=z —pv+ (14 p) (8)
We used batch size of 64 to utilize the resources of one
nVidia RTX 2080Ti GPU for training and evaluation. Total
training time for each run was 28 seconds per epoch.

Since we achieved the desired 71% accuracy, the area
under curve of that model on the test set 0.70 was used
to calculate 0.67 as the performance target for the reduced
model.

4.2.2 Simplifications used

As the potential simplifications for Algorithm .1 we con-
sidered:

e Reducing number of filters: AlexNet was designed to
distinguish many classes whereas in the current project
we only have two classes. Reducing the number of
filters to some extent might not have effect.

¢ Increasing stride of convolutions: larger stride means
that the kernel will be applied fewer times for the same
image, albeit the layer will produce fewer features.

1
DELE IS x
i : 3 [X
1
R R SR S S
) 1 k " x
E 0.65 !
o X
oA i
Qc 1
e =]]
55 0607 ! .
2=]
E
il 1
Z 0554 |
] # Embedded 3-layer
: Baseline Alexhet
050 | x ® Reduced AlexNet
i 1
100 107 109

Number of operaticns for 1 example

Figure 3. AUC of validation set evaluation of every model tried
during the evaluation of the meta-algorithm. The horizontal line
is the quality cutoff: since the Baseline AlexNet model achieved
71.5% AUC, and the value of AUC of a completely random classi-
fier is 0, 5, the cutoff 5 = 0.8 yields 0.5 + (0.71 — 0.5)3 = 0.67
cutoff for AUC of the considered models. The vertical axis is the
operation count cutoff. The successful target models must land in
the top left quadrant.

¢ Reducing the size of the fully-connected layer (same
reasoning as for reducing the number of filters)

¢ Removing middle layers.

We also employed methods that improve error with-
out adding computation to inference (more computation re-
quires more energy). An example of that is Dropout regular-
ization [22]: during training evert activation is omitted with
probability p; this simulates averaging over large ensemble
of models and reduces overfitting. During testing and infer-
ence, all connections are active. This improves performance
without increasing the number of operations (but we must
be careful to measure the operations during testing only).

4.3. Baseline ''simple'' method

We’ve also employed a baseline fully-connected two-
layer network, which we already implemented for Assign-
ment 2. A non-neural baseline that was simple to implement
(count white pixels) performed poorly even in the milestone
assessment, and was not expanded in the final part of the
project.

5. Experiment results

After running the meta-algorithm presented in sec-
tion 1] on the baseline [f.2.1] we have arrived to the fol-
lowing three-layer model presented in Table[5} During the
evaluation of meta-algorithm, multiple models were trained
and evaluated, and the scatter plot of their validation set per-
formance against the number of operations is presented in

figure 3]

Model | Set | AUC | AUC drop | Accuracy | Precision | Recall | FLOPS | Est. runtime
Baseline AlexNet test | 0.70 0 0.72 0.53 0.52 | 82,700,000 3 min 1s
Reduced AlexNet val | 0.67 -15% 0.68 0.45 0.41 5,100,000 -
Reduced AlexNet test | 0.66 -20% 0.69 0.47 0.44 5,100,000 11s
Embedded 3-layer | val | 0.69 -5% 0.70 0.48 0.49 1,300,000 -
Embedded 3-layer | test | 0.62 -40% 0.64 0.39 0.39 1,300,000 2.9s

Table 2. Evaluation of the baseline AlexNet, the 3-layer Embedded model and the baseline Two-layer fully connected network. Addition-
ally, the "Reduced AlexNet” described in section[5] The threshold for Precision and Recall metrics is set to 0.5 for the purpose of this

table
Layer | Depth | stride | kernel | activation
Conv2D 12 8 11 relu
MaxPool 2 3
Conv2D 32 1 5 relu
MaxPool 2 3
BatchNorm
Conv2D 256 1 3 relu
MaxPool 2 3
Dropout | p=0.5
FC 1024 softmax
FC 2 softmax

Table 3. Simplified AlexNet architecture that we used as a baseline
model mo. The final layer produces class scores for classes “Not
Smiling” and ”Smiling”.

We noted during our experiments that removing Batch
Normalization layers do not decrease the number of opera-
tions significantly, but doing so reduces performance on the
validation set.

The results of evaluation of the models are presented in
Table 3l In addition to the two baseline and the final net-
work, it contains another net, ”’Reduced AlexNet”. During
evaluation on the test we found that the Embedded 3-layer
model didn’t perform as well on test set as it did on the val-
idation set. Out of the database of training runs, we have
identified the minimal model that does perform within the
acceptable range on the test set as well as on validation set.

This model is simply the baseline AlexNet displayed in
Figure with two simplifications: (a) every convolu-
tional layer has 4 times as few filters, (b) the fully-connected
layer only has 1024 hidden units, and (c) the stride on the
first convolutional layer is increased to 8. However, this
model would take 6 seconds to run instead of the 3 seconds
we were targeting.

When selecting the value for the classification threshold,
we need to consider the Precision-recall and ROC curves
that are presented in figures [] and [3] respectively. These
curves provide a valuable insight into the relative perfor-
mance of our models. For example, we can see that the
Baseline and Reduced AlexNet models perform almost in-

10
—— Embedded 3-layer
Baseline AlexNet
0.8 #— Reduced AlexNet

—»— 2-layer Fully Connected

0.2

0.6

Precision

0.2

0.0

04 06 08
Recall

0.0 10

Figure 4. Precision-recall curve as evaluated on the test set.

10

0.8

0.6

0.4

True Positive Rate

.#7 = Embedded 3-layer {auc=0.62)
0.2 e Baseline AlexNet (auc=0.70)
-7 *= Reduced AlexNet (auc=0.67)
== 2-layer Fully Connected (auc=0.48)

00 T T T
04 06 08
False Positive Rate

0.0 0.2 10

Figure 5. ROC curve as evaluated on the test set. Dotted line de-
notes the expected performance of a completely random classifier.

distinguishably. Another insight is that precision is unelas-
tic for the embedded 3-layer model, an we can achieve
higher values of recall compared to the best precision for
this model.

5.1. Feature visualisation

As a way to gain insight on how our model decides
whether the person is smiling or not, we have used saliency
maps. A saliency map is a visualization of how much every
individual pixel contributes to the final score. We have com-
puted it using gradient ascent of the cross-entropy loss (@)
over the pixels of the image itself. The resultant heatmap of
the gradients was visualized in Figure [6]

smile=1

y=1v=0.99 y=1v=063

smile=1

y=1v=0.29 y=1v=0.97 y=1v=0.99

Figure 6. Saliency maps of the 3-layer embedded model (top) and
”Reduced AlexNet” model (bottom). “Red” means low or no ac-
tivations, and ”Yellow” means higher activation. Note that the the
models pay moderate attention to the mouth, but most of the atten-
tion goes towards the shape of the cheek (e.g. subject #2 in the top
row).

y=0v=051

y=0v=083

y=0v=0.77 y=0v=083

Figure 7. Examples of “False Positives” of the 3-layber Embed-
ded model: the model predicted “smiling”, while the ground truth
label was “not smiling”. The value of v denotes the score of the
”smiling” class.

Look at the saliency maps of the Reduced AlexNet
model (Figure [f). We noticed, especially while observing
subject #2 in Figure[6]in the bottom (but also all other sub-
jects in the bottom) and especially subject #3 at the top that
the pixels at the mouth itself have little effect. The most
pronounced effect was the deformities in the checks.

The model even correctly identified. based on these fea-
tures, that the subject #1 in bottom row is smiling, although
the actual smile was cropped out during preprocessing (ver-
ified by the original photograph).

5.2. Error Analysis

Examples in figure[7|feature several errors for the 3-layer
embedded model. One very prevalent example was misla-
beled ground truth data (subject #4 in both figures). Subject
#3 in [7) has features in the cheek similar to what saliency
maps associate with smiling expression albeit the subject is

y=1v=0.05 y=1v=027 y=1v=0.05

y=1v=0.05

h

Figure 8. Examples of “False Negatives” of the 3-layber Embed-
ded model: the model predicted “not smiling”, while the ground
truth data contained ”smiling”. The value of v denotes the score
of the ”smiling” class.

not smiling. The inverse is true for subject #2 bottom row:
although the subject is smiling, the cheek features are not
as pronounced due to dim lighting. However, the model has
predicted a substantial score of 0.27, so tuning threshold
might also help classify this example.

6. Conclusions

In this project, we have prepared a dataset and replicated
performance approaching state-of-the-art on this dataset us-
ing AlexNet [13] for emotion recognition, similar to [19]
and [7]. We’ve defined a framework for evaluating the fit-
ness of a model for deployment on hardware with low clock
speed. We’ve proposed and executed a meta-learning al-
gorithm that can iteratively achieve the desired portability.
However, the algorithm might have overused the validation
set, as the model produced by it performed worse on vali-
dation set. Despite that, a model of acceptable quality (no
more than 20% worse than the AlexNet-based detector as
measured by roc — 0.5) that theoretically can be executed
within 11 seconds on an embedded system was found (Ta-

ble[3).

7. Future work

Due to time constraints we were not able to actually de-
ploy the model on an embedded system, so this is left for
future work. Attempting to deploy on SparkFun Apollo3
would provide the necessary validation of the assumptions
made about performance of neural systems on embedded
hardware.

The meta-algorithm was only executed manually, and
automating it and improving it (e.g. not stopping after the
first success which might not fare well on the test set) is left
to future work. Obtaining a higher-quality dataset would
also be necessary for high-quality results. Additionally, we
would like to explore if removing connections and features
from a network pre-trained on a more generic task achieves
better performance than training a smaller network on the
existing data for the task.

References

[1] E. K. V.1. 1. A. Buslaev, A. Parinov and A. A. Kalinin. Al-
bumentations: fast and flexible image augmentations. ArXiv
e-prints, 2018.

[2] Arduino Community. Speed of math operations (particularly
division) on arduino, 2016. https://forum.arduino.
cc/index.php?topic=926844#msg2733723, Last
accessed on 2019-04-25.

[3] A. Asthana, S. Zafeiriou, S. Cheng, and M. Pantic. Incre-
mental face alignment in the wild. In 20/4 IEEE Conference
on Computer Vision and Pattern Recognition, pages 1859—
1866, June 2014.

[4] M. Biehl, D. Matsumoto, P. Ekman, V. Hearn, K. Heider,
T. Kudoh, and V. Ton. Matsumoto and ekman’s japanese and
caucasian facial expressions of emotion (jacfee): Reliability
data and cross-national differences. Journal of Nonverbal
Behavior, 21(1):3-21, Mar 1997.

[5] Coolest Project Fair. How we built our fa-
cial recognition ferris wheel, 2018. https:
//create.arduino.cc/projecthub/Spivey/

[16] T. Lin, P. Goyal, R. Girshick, K. He, and P. Dollr. Focal
loss for dense object detection. In 2017 IEEE International
Conference on Computer Vision (ICCV), pages 2999-3007,
Oct 2017.

[17] D. Matsumoto and B. Willingham. Spontaneous facial ex-
pressions of emotion of congenitally and noncongenitally
blind individuals. Journal of personality and social psychol-
ogy, 96:1-10, 02 2009.

[18] D. H. Noronha, B. Salehpour, and S. J. E. Wilton. Leflow:
Enabling flexible FPGA high-level synthesis of tensorflow
deep neural networks. CoRR, abs/1807.05317, 2018.

[19] S. Ouellet. Real-time emotion recognition for gaming using
deep convolutional network features. CoRR, abs/1408.3750,

2014.
[20] Pete Warden. Scaling ~ machine learn-
ing models to embedded devices, 2019.

https://petewarden.com/2019/03/27/

scaling-machine-learning-models—-to-embedded-devices/

Last accessed on 2019-04-25.
[21] R. Rosipal and N. Krdmer. Overview and recent advances in
partial least squares. In C. Saunders, M. Grobelnik, S. Gunn,

how-we-built-our-facial-recognition-ferris-wheehnd¢8haRe-Taylor, editors, Subspace, Latent Structure and

Last accessed on 2019-04-25.

[6] C. Darwin. The expression of the emotions in man
and animals. New York ;D. Appleton and Co.,, 1916.
https://www.biodiversitylibrary.org/bibliography/4820 —
Includes index.

[7] W. Ding, M. Xu, D. Huang, W. Lin, M. Dong, X. Yu, and
H. Li. Audio and face video emotion recognition in the
wild using deep neural networks and small datasets. In Pro-
ceedings of the 18th ACM International Conference on Mul-
timodal Interaction, ICMI 16, pages 506-513, New York,
NY, USA, 2016. ACM.

[8] B. Fasel. Robust face analysis using convolutional neural
networks. volume 2, pages 40 — 43 vol.2, 02 2002.

[9] Y. Freund and R. E. Schapire. A decision-theoretic general-
ization of on-line learning and an application to boosting. J.
Comput. Syst. Sci., 55(1):119-139, Aug. 1997.

[10] R.B. Girshick. Fast R-CNN. CoRR, abs/1504.08083, 2015.

[11] D. Hoe Kim, W. Baddar, J. Jang, and Y. Man Ro. Multi-
objective based spatio-temporal feature representation learn-
ing robust to expression intensity variations for facial expres-
sion recognition. IEEE Transactions on Affective Comput-
ing, PP:1-1, 04 2017.

[12] P. Khorrami, T. L. Paine, and T. S. Huang. Do deep neu-
ral networks learn facial action units when doing expression
recognition? CoRR, abs/1510.02969, 2015.

[13] A. Krizhevsky, 1. Sutskever, and G. E. Hinton. Imagenet
classification with deep convolutional neural networks. In
F. Pereira, C. J. C. Burges, L. Bottou, and K. Q. Weinberger,
editors, Advances in Neural Information Processing Systems
25, pages 1097-1105. Curran Associates, Inc., 2012.

[14] B. T. Lau. Portable real time emotion detection system for
the disabled. Expert Syst. Appl., 37(9):6561-6566, Sept.
2010.

[15] S. Li and W. Deng. Deep facial expression recognition: A
survey. CoRR, abs/1804.08348, 2018.

Feature Selection, pages 34-51, Berlin, Heidelberg, 2006.
Springer Berlin Heidelberg.

[22] N. Srivastava, G. Hinton, A. Krizhevsky, 1. Sutskever, and
R. Salakhutdinov. Dropout: A simple way to prevent neu-
ral networks from overfitting. Journal of Machine Learning
Research, 15:1929-1958, 2014.

[23] R. Vemulapalli and A. Agarwala. A compact embedding for
facial expression similarity. CoRR, abs/1811.11283, 2018.

[24] P. Viola and M. Jones. Robust real-time object detection. In
International Journal of Computer Vision, 2001.

A. Contributions and Acknowledgements

In this project, almost all code, including dataset man-
agement, downloading images, sampling data for Mechan-
ical Turk survey, merging Ground Truths, experimental
framework, and training loop, and management of evalu-
ation results was written by the author from scratch, with
the following exceptions:

e The code to visualize Saliency maps was taken from
the authors own submission to cs231N based on the
Jupyter Notebook supplied with the class.

e the initial version of the training loop was also taken
from Assignment 2; however as the code became more
complex, all this code was effectively removed and
rewritten using TensorFlow API

The following open-source packages were used:

e TensorFlow 2.0 for model training, evaluation and
management.

e Albumentations [1] for performing image augmenta-
tions on the fly.

https://forum.arduino.cc/index.php?topic=92684#msg2733723
https://forum.arduino.cc/index.php?topic=92684#msg2733723
https://create.arduino.cc/projecthub/Spivey/how-we-built-our-facial-recognition-ferris-wheel-deae59
https://create.arduino.cc/projecthub/Spivey/how-we-built-our-facial-recognition-ferris-wheel-deae59
https://create.arduino.cc/projecthub/Spivey/how-we-built-our-facial-recognition-ferris-wheel-deae59
https://petewarden.com/2019/03/27/scaling-machine-learning-models-to-embedded-devices/
https://petewarden.com/2019/03/27/scaling-machine-learning-models-to-embedded-devices/

The author thanks Anna Smagina for invaluable advice
on dataset preparation, augmentation techniques, and for
supplying examples of prepared datasets, and for supplying
references for “handcrafted” feature techniques.

